
Sets and relations

5.1 Sets

In this chapter, we will present some basic mathematical ideas about sets
and relations. Some of the material on sets may be familiar to you
already, in which case you may wish to scan over those sections fairly
briefly. The main reason for introducing sets is to provide some useful
terminology and notation for the work that follows; we will not be
studying the mathematical theory of sets as such. Relations arise in
computing in the theory of relational databases, and we will need them in
Chapter 12 when we study congruences.

The word set is used in mathematics to mean any well defined
collection of items. The items in a set are called the elements of the set.
For example, we can refer to the set of all the employees of a particular
company, the set of all ASCII characters1, or the set of all the integers that
are divisible by 5.

A specific set can be defined in two ways. If there are only a few
elements, they can be listed individually, by writing them between braces
(‘curly’ brackets) and placing commas in between. For example, the set of
positive odd numbers less than 10 can be written in the following way:

{1, 3, 5, 7, 9}

If there is a clear pattern to the elements, an ellipsis (three dots) can be
used. For example, the set of odd numbers between 0 and 50 can be
written:

{1, 3, 5, 7, ..., 49}

Some infinite sets can also be written in this way; for example, the set of
all positive odd numbers can be written:

{1, 3, 5, 7, ...}
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1 The ASCII character set is a standard set of 128 characters, including letters,
digits, punctuation marks, mathematical symbols and non-printing (control)
characters. Each character has a unique numeric code from 0 to 127. The 8-bit
binary equivalent of the numeric code is used in many computers for the
internal representation of character data. (ASCII stands for American Standard
Code for Information Interchange.)



A set written in any of these ways is said to be written in enumerated
form.

The second way of writing down a set is to use a property that defines
the elements of the set. Braces are used with this notation also. For
example, the set of odd numbers between 0 and 50 can be written:

{x: x is odd and 0 < x < 50}

The colon is read ‘such that’, so the definition reads ‘the set of all x such
that x is odd and 0 < x < 50’. Recalling our work from the previous
chapter, notice that the expression following the colon is a predicate
containing the variable x. A set written in the form {x:P(x) }, where P(x) is
a predicate, is said to be written in predicate form.

Capital letters are commonly used to denote sets. For example, we can
write:

A = {1, 2, 3, 4, 5}

B = {x: x is a multiple of 3}

The symbol!means ‘is an element of’. For example, if A and B are the
two sets defined above, we can write 2!A and15!B. The symbol"
means ‘is not an element of’; for example, 6"A and11"B.

Many (but by no means all) of the sets we will be dealing with are sets
of numbers. Some sets of numbers arise sufficiently often that special
symbols are reserved for them. The most important of these for our
subsequent work are listed below:

N is the set of natural numbers (or positive integers): {1, 2, 3, 4, ...}.
J is the set of integers: {..., –3, –2, –1, 0, 1, 2, 3, ...}.
Q is the set of rational numbers: {x: x = m/n for some integers
m and n}.
R is the set of real numbers.

The sets J and R may remind you of the data types ‘integer’ and ‘real’,
which arise in programming. We will not go into the details of the
concept of typing here. However, it is important to understand that a
careful distinction needs to be made between the elements of J or R and
the representations of integers or real numbers in a computer. Data types
in a computer are constrained by the technical limitations of computing
hardware; we saw in Chapter 3 that there is a limit to the size (and, in the
case of real numbers, the precision) of the numbers that can be
represented. There is no such restriction in mathematics; we are quite free
to imagine infinite sets of numbers, and it is often convenient to do so.

There are two more sets for which we will introduce special symbols.
The first of these is the null set (or empty set), which is denoted by the
symbol#, and which has no elements. (Note that the symbol# is not the
same as the Greek letter $ (phi).) The null set can be written in
enumerated form, like this:

{}
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Don’t make the mistake of writing {#} for the null set. The set {#} is
not the null set; it is a set with one element, and that element is the null
set.

The null set can be written in predicate form using any predicate that is
always false, for example, {x: x x% }.

It may seem strange to define the null set, and you might wonder why it
is necessary to do so. Perhaps you had similar misgivings when you first
learnt about the number 0 (‘If there’s nothing there, how can you count
it?’). It will become clear as we proceed that we need the null set in our
work.

The other set for which we will introduce a symbol is the universal set,
denoted by !. The term ‘universal set’ does not refer to a specific set, but
rather to a set that contains all the elements arising in the problem at
hand. The universal set can therefore change from one problem to
another. For example, in a problem dealing with various sets of numbers,
we might choose ! to be R, the set of all real numbers.

5.2 Subsets, set operations and Venn diagrams

Definition Let A and B be sets. We say that B is a subset of A, and write B A& , if
every element of B is an element of A.

For example, let A = {1, 2, 3, 4, 5}, B = {1, 3, 4}, and C = {2, 4, 6}. Then
B A& , but C is not a subset of A, because 6!C but 6"A.

A useful way of depicting the relationship between several sets is to
represent each set by an oval region on a type of diagram known as a
Venn2 diagram. The Venn diagram for the present example is shown in
Figure 5.1.

The rectangle forming the boundary of the Venn diagram represents the
universal set !, which we may take to be {1, 2, 3, 4, 5, 6} in this example.
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2 Venn diagrams are named after the English mathematician, John Venn
(1834–1923).



A second example of subsets is provided by the following ‘chain’ of
subsets of R, the set of real numbers:

N J Q R& & &

The definition of ‘subset’ should be read carefully (as should all
definitions in mathematics); it really does mean exactly what it says. In
particular, if A is any set, then A A& , because it is certainly true that every
element of A is an element of A. (The resemblance of the symbol& to' is
not accidental; the relations ‘subset’ and ‘less than or equal to’ have some
similar properties.)

The reasoning that underlies the following fact is a little more subtle:

#&A for any set A

In words: every element of# is an element of A. If you are puzzled by this
statement, ask yourself how one set can fail to be a subset of another. This
can happen only if there is an element of the first set that is not an
element of the second; for example, {2, 4, 6} is not a subset of {1, 2, 3, 4, 5},
because 6 is an element of the first set but not the second. Therefore, the
statement#&A would be false only if we could find an element of# that
is not an element of A. But we can’t find such an element, because#has
no elements! We say that the statement ‘every element of# is an element
of A’ is vacuously true, and conclude that#&A.

Now that we have established the concept of a subset of a set, we can
define what it means for two sets to be equal.

Definition Two sets A and B are equal if A B& and B A& .

In other words, A = B if every element of A is an element of B, and every
element of B is an element of A. A less formal way of expressing this is:
‘Two sets are equal if they have the same elements.’ In particular, this
means that the order in which the elements of a set are listed in
enumerated form is unimportant: {a, b, c} is the same set as {b, c, a}. It
also means that a set does not have ‘repeated’ elements – we would never
write a set as {a, a, b}, because it is the same set as {a, b}.

If B A& and B A% , then B is called a proper subset of A.
A number of operations are defined on sets. We list them now, together

with their corresponding Venn diagrams.

The intersection of two sets A and B is:

A B x x A x B( ) ! !{ : }and

The intersection of A and B is depicted by the shaded region of the Venn
diagram in Figure 5.2.

Two sets with no elements in common are said to be disjoint. In
symbols, A and B are disjoint if A B( )#.
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The union of A and B is:

(Recall that ‘or’ always means inclusive-or.)
The union of A and B is depicted by the shaded region of the Venn

diagram in Figure 5.3.

The complement of A is:

(Recall that ! is the universal set.)
The complement of A is depicted by the shaded region of the Venn

diagram in Figure 5.4.

The difference of A and B is:

Discrete mathematics for computing
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The difference of A and B is depicted by the shaded region of the Venn
diagram in Figure 5.5.

The last of these operations is less widely used than the others, because
it can always be rewritten in terms of intersection and complement, using
the law:

A B A B* ) (

We can illustrate a law such as this one by constructing the Venn
diagram for each side of the equation, and seeing that the two diagrams
are the same. In this case, the Venn diagram for the right hand side is
produced by shading the regions corresponding to A and B, as shown in
Figure 5.6. Then A B( corresponds to the doubly shaded region
(indicated by darker shading in the figure). This region is the same as the
region shaded in Figure 5.5.

Alternatively, we can prove that A B A B* ) ( using the definitions of
the set operations:

Example 5.2.1 Let the universal set be ! = {1, 2, 3, ..., 10}. Let A = {2, 4, 7, 9},
B = {1, 4, 6, 7, 10}, and C = {3, 5, 7, 9}. Find:

(a) A B+
(b) A C(
(c) B C(
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(d) ( )A B C( +

(e) B C C+ (

Solution It is helpful to draw a Venn diagram in a problem like this (Figure 5.7).

(a) A+B = {1, 2, 4, 6, 7, 9, 10}
(b) A(C = {7, 9}
(c) C = {1, 2, 4, 6, 8, 10}, so B C( = {1, 4, 6, 10}
(d) B = {2, 3, 5, 8, 9}, therefore A B( = {2, 9}, so ( )A B C( + = {2, 3, 5, 7, 9}
(e) B+C = {1, 3, 4, 5, 6, 7, 9, 10}, therefore B C+ = {2, 8}, so B C C+ ( )#

The operations of intersection, union and complement correspond in a
natural way to the logical connectives and, or and not respectively.
Because of this, each of the laws of logic gives rise to a corresponding law
of sets.

For example, the commutative law p q q p, - , in logic yields the law
A B B A( ) ( for sets. We can show this in the following way:

The first and third equalities follow from the definition of the
intersection of two sets, while the second equality follows from the
commutative law of logic.

A list of some of the laws of sets is given in Table 5.1. Most of these laws
have the same name as the corresponding law of logic, and all can be
derived from one of the laws of logic in the way we have just seen.

Example 5.2.2 Use Venn diagrams to illustrate the first de Morgan’s law for sets.

Solution We draw a Venn diagram for each side of the equation. For the left-hand
side, we draw the Venn diagram for A B( first, and then draw the Venn
diagram for A B( (Figure 5.8).

For the right-hand side, we draw the Venn diagrams shown in Figure
5.9.

The shaded region is the same for both sides of the equation.
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Law(s) Name

A A) Double complement law

A A A( ) A A A+ ) Idempotent laws

A B B A( ) ( A B B A+ ) + Commutative laws

( ) ( )A B C A B C( ( ) ( ( ( ) ( )A B C A B C+ + ) + + Associative laws

A B C
A B A C
( + )

( + (

( )

( ) ( )

A B C
A B A C
+ ( )

+ ( +

( )

( ) ( )
Distributive laws

A B A B( ) + A B A B+ ) ( de Morgan’s laws

A(! = A A A+#) Identity laws

A(#)# A+! = ! Annihilation laws

A A( )# A A+ )! Inverse laws

A A B A( + )( ) A A B A+ ( )( ) Absorption laws

Table 5.1

Figure 5.8

Figure 5.9



5.3 Cardinality and Cartesian products

Definition The cardinality of a finite3 set is the number of elements in the set. The
cardinality of a set A is denoted by | A |.

For example, if A = {a, b, c, d, e} then | A | = 5.

Definition Let A be a set. The power set of A is the set of all subsets of A, and is
denoted by (A).

Note that a power set is an example of a set of sets; that is, a set whose
elements are themselves sets.

For example, consider a set with three elements: {a, b, c}. Listing all the
subsets of {a, b, c}, and remembering to include the set itself and the null
set, we obtain the following power set:

({a, b, c}) = {#, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}}

The power set of {a, b, c} has 8 elements. Since {a, b, c} can represent any
3-element set, we conclude that any set with 3 elements has 8 subsets.

The following result gives a general formula for the number of subsets
of any finite set.

Theorem Let A be a set with n elements. Then A has 2n subsets.

Proof Let A = {x1, x2, ..., xn}, and suppose we want to select a subset B of A. We
can do this by looking at each element of A in turn, and deciding whether
or not to include it in B. There are two possibilities for x1: either x B1 !
or x B1 " . Similarly, either x B2 ! or x B2 " (2 possibilities), so the total
number of possibilities for x1 and x2 is 2 × 2. Continuing in this way
with x3, x4, ..., xn, we conclude that the total number of possible subsets is
2 × 2 × ... × 2 (n times), which equals 2n.

The technique used in the proof is an application of a result known as the
Multiplication principle, which we will meet again in Chapter 9.

We noted earlier that the elements of a set are not listed in any
particular order – {a, b} is the same set as {b, a}, for example. By contrast,
an ordered n-tuple is a list of n elements in a particular order. To
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distinguish them from sets, ordered n-tuples are written using
parentheses instead of braces:

(x1, x2, ..., xn)

In particular, an ordered 2-tuple (usually called an ordered pair) is a pair
of elements in a particular order, and is written (a, b). Thus, the ordered
pair (1, 2) is different from (2, 1), for example.

If two ordered n-tuples (x1, x2, ..., xn) and (y1, y2, ..., yn) are equal, then
the elements in the corresponding positions must be equal: x1 = y1,
x2 = y2, and so on.

Definition The Cartesian4 product of two sets A and B is defined by:

In words: A × B is the set of all ordered pairs in which the first element
comes from A and the second element comes from B.

More generally, the Cartesian product of the n sets A1, A2, ..., An is
defined by:

In words: A1 × A2 × ... × An is the set of all ordered n-tuples in which the
first element comes from A1, the second from A2, and so on.

We can write the definition of A1 × A2 × ... × An more concisely by using
predicate logic notation:

The notation here is a little different from the notation in Chapter 4,
because the set of values of i is written down explicitly here.

Example 5.3.1 Let A = {x, y} and B = {1, 2, 3}. Write down the Cartesian product of A
and B in enumerated form.

Solution A × B = {(x,1), (x,2), (x,3), (y,1), (y,2), (y,3)}

Cartesian products arise in computing when we deal with strings of
characters defined according to certain rules. For example, on some
computers, the usercode that identifies a registered user must consist of 3
letters, followed by 3 digits, followed by a letter, for example XYZ123A.
Let L denote the set of letters, and let D denote the set of digits; then the
set of all valid usercodes is:
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L × L × L × D × D × D × L

The usercode XYZ123A corresponds to the element (X, Y, Z, 1, 2, 3, A) of
the set L × L × L × D × D × D × L. (The difference between writing
XYZ123A and (X, Y, Z, 1, 2, 3, A) is just one of notation, not a conceptual
difference.)
Sometimes we want to form a Cartesian product of a set with itself. This
situation arises sufficiently often to warrant a notation of its own. If A is
any set, the Cartesian product A × A × ... × A (n times) is written An. Thus
we can write:

For example, R2 is the set of all ordered pairs of real numbers (x, y). In
the study of coordinate geometry, this set is represented geometrically as
a plane (the Cartesian plane), with x- and y-axes.

A second example, which we will use in Section 5.4, is the Cartesian
product {0,1}n. The elements of this set are ordered n-tuples in which
each element is either 0 or 1. For example, (1, 0, 0, 1, 0, 1, 1, 1) is an
element of {0,1}8. We can think of {0,1}n as the set of all strings of n bits.

5.4 Computer representation of sets

Some programming languages, such as Pascal, allow sets to be handled as
a compound data type, where the elements of the sets belong to one of the
data types available in the language, such as integers or characters. The
question then arises: how are sets stored and manipulated in a computer?

A set is always defined in a program with reference to a universal set !.
We must make an exception here to the rule that the order of the
elements of a set is irrelevant, because we need to assume that the
elements of ! are listed in a definite order. Any set A arising in the
program and defined with reference to this universal set ! is a subset of
!. We want to know how the computer stores A internally.

The answer is that A is represented by a string of n bits, b1b2...bn, where
n is the cardinality of !. In the notation we have just introduced, the bit
string b1b2...bn can be regarded as the element (b1, b2, ..., bn) of {0,1}n. The
bits are determined according to the rule:

bi = 1 if the ith element of ! is in A

bi = 0 if the ith element of ! is not in A

where i ranges over the values 1, 2, ..., n.

Example 5.4.1 Let ! = {1, 2, 3, ..., 10}.

(a) Find the representation of {2, 3, 5, 7} as a bit string.
(b) Find the set represented by the bit string 1001011011.

82

Discrete mathematics for computing

1 2{( , ,..., ) : {1,2,..., }( )}n
n iA x x x i n x A= " Œ Œ



Solution (a) Looking in turn at each element of !, and writing down 1 if the
element is in {2, 3, 5, 7} and 0 if it is not, we obtain the answer:
0110101000.

(b) The answer is obtained by writing down each element of ! that
corresponds to a 1 in the bit string: {1, 4, 6, 7, 9, 10}.

Each subset of an n-element universal set ! can be paired up with the
n-bit string that is its computer representation. By doing this, we set up a
one-to-one correspondence between the subsets of ! and all possible n-bit
strings. We know already that there are 2n such strings, so there must also
be 2n subsets of !. This provides another proof that any set with n elements
has 2n subsets.

The operations of intersection, union and complement can be carried
out directly on the bit strings, provided that the sets involved have been
defined with reference to the same universal set. For example, the bit
string of A B( has a 1 wherever the bit strings of A and B both have a 1.
This process for calculating the bit string of A B( is called a bitwise and
operation. Similarly, the bit strings of A B+ and A are calculated using a
bitwise or and a bitwise not respectively.

Example 5.4.2 Let the bit strings of A and B be 00101110 and 10100101 respectively. Find
the bit strings of A B( , A B+ and A.

Solution Performing the appropriate bitwise operations, we obtain the answers:
00100100, 10101111 and 11010001.

5.5 Relations

Relations between pairs of objects occur throughout mathematics and
computing. We have already met some examples of relations. If one
logical expression is equivalent to another, this is an example of a
relationship between the two logical expressions. We can refer to the
relation of one logical expression being equivalent to another. In a similar
way, we can refer to the relation of one set being a subset of another.
Other examples in mathematics are the relation of one number being less
than another, and the relation of one integer being divisible by another.
In a database in which words are to be sorted into alphabetical order, we
deal with the relation of one word preceding another in an alphabetical
listing. A non-mathematical example is the various relationships between
members of a family – one person may be the sister of another, the cousin
of another, and so on.

In each of these examples, a statement is made about a pair of objects
that is true in some cases and false in others; the statement ‘x is less than
y’ is true if x = 3 and y = 4, for example, but false if x = 3 and y = 2.
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Before we can develop these ideas further, we need to make them more
precise. We notice that each of the relations we have mentioned is
associated with a set, and that the relation makes sense only when it refers
to ordered pairs of elements of that set. For example, the relation ‘less
than’ makes sense when it refers to ordered pairs of elements of R, the set
of real numbers; if (x,y) is an ordered pair of real numbers, then the
statement ‘x is less than y’ is either true or false. Similarly, the relation ‘is
a sister of’ makes sense when applied to ordered pairs of elements of the
set of all people, while the relation ‘precedes in alphabetical order’ refers
to ordered pairs of words. In general, if the set to which the relation
applies is denoted by A, then the ordered pairs are elements of the
Cartesian product A × A.

Informally, then, a relation on a set A is a statement about ordered
pairs (x,y) belonging to A × A. The statement must be either true or false
for each pair of values of x and y. This is often the most convenient way of
thinking about a relation. The formal mathematical definition is
somewhat different, however.

Definition A binary5 relation on a set A is a subset of A × A.

This definition needs some explanation, since the connection between it
and the informal idea of a relation might not be obvious. The easiest way
to do this is by means of an example. Consider the relation ‘less than’ on
the set A = {1, 2, 3, 4}. For any ordered pair of elements of A (that is, for
any element of A × A), the relation ‘less than’ is either true or false for
that pair. We can list all of the ordered pairs for which the relation is true:

(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)

Formally, the relation is the set of these ordered pairs:

{(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)}

This set is a subset of A × A, and so it is a relation according to the
definition given above.

If we denote this set of ordered pairs by R, then we can state that x and
y are related by writing ( , )x y R! . In practice, it is more usual to write
x R y to mean that x and y are related. In fact, we don’t even need the
name R in this example – the relation already has its own symbol, ‘<’, so
we can simply write x < y to mean that x is related to y.

There is a way of depicting a relation graphically that is often useful,
provided that the set on which the relation is defined is not too large. This
is done by using dots to represent the elements of the set, and drawing an
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arrow from x to y for each pair (x,y) for which x is related to y. The
resulting diagram is an object known as a directed graph.

Example 5.5.1 Draw the graphical representation of the relation ‘less than’ on {1, 2, 3, 4}.

Solution This is shown in Figure 5.10.

A relation on a finite set can also be represented as a rectangular array
of Ts and Fs, known as a relation matrix (plural: matrices). The rows and
columns of the matrix are labelled with the elements of the underlying
set. If x is related to y, then the entry in the row labelled x and the column
labelled y is T, otherwise it is F. This representation is particularly useful
if a relation is to be stored and manipulated in a computer.

Example 5.5.2 Write down the relation matrix for the relation in Example 5.5.1.

Solution 1 2 3 4
1

2

3

4

F T T T

F F T T

F F F T

F F F F

.

/

0
0
0
0

1

2

3
3
3
3

We can define different types of relations according to their properties.
The most important of these for our future work are listed below.

Definitions Let R be a relation on a set A.

R is reflexive if x R x for all x A! .
R is irreflexive if there are no elements x of A for which x R x.
R is symmetric if x R y implies y R x, for all x y A, ! .
R is antisymmetric if x R y and y R x imply x = y, for all x y A, ! .
R is transitive if x R y and y R z imply x R z, for all x y z A, , ! .

The above definitions could all be written somewhat more concisely using
the notation of predicate logic, at the expense of producing what might
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appear to some people as an ‘alphabet soup’ of mathematical symbols.
For example, the last definition (transitivity) could be written:

This more concise form (or something similar) would be used in
programming in a relational database, in logic programming, and in
formal system specifications.

As a general rule, we will use whatever combination of English words
and mathematical symbols seems to make the meaning clearest. In this
case, the definitions are probably easier to understand in the form in
which they are given.

Example 5.5.3 The following relations are defined on the set of all people. Classify them
according to the definitions given above.

(a) ‘is a sister of’
(b) ‘is the father of’
(c) ‘has the same parents as’

Solution (a) This relation is not reflexive; in fact it is irreflexive, because no
person can be her (or his!) own sister. It is not symmetric (if X is the
sister of Y then Y need not be the sister of X – Y could be the brother
of X), nor is it antisymmetric (X can be the sister of Y and Y the sister
of X, without X and Y being the same person). It is not transitive
either, because if X is the sister of Y and Y is the sister of Z then X
need not be the sister of Z. (This is a bit subtle; can you see why it is
true?)

(b) This relation is not reflexive, it is irreflexive, it is not symmetric, it is
antisymmetric (in a vacuous sense – think about the truth table for if-
then), it is not transitive.

(c) This relation is reflexive (and not irreflexive), symmetric (and not
antisymmetric) and transitive.

Example 5.5.4 Classify the following relations, which are defined on the set J of integers:

(a) ‘is less than or equal to’
(b) ‘is divisible by’
(c) ‘has the same parity as’ (that is, both integers are odd or both are

even)

Solution (a) x x' is always true, so the relation is reflexive (and not irreflexive). If
x y' then it is never the case that y x' except when x = y, so the
relation is antisymmetric (and not symmetric). If x y' and y z' then
x z' , so the relation is transitive.
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(b) This relation is reflexive and transitive, but neither symmetric nor
antisymmetric. (To see that it is not antisymmetric, note that –2 is
divisible by 2 and 2 is divisible by –2, but 2 2%* .)

(c) This relation is reflexive, symmetric and transitive.

Look again at the last of the three relations in Examples 5.5.3 and 5.5.4.
Both relations express an idea of ‘sameness’ – ‘has the same parents as’,
‘is the same parity as’. Notice that these two relations are reflexive,
symmetric and transitive.

Definition A relation that is reflexive, symmetric and transitive is called an
equivalence relation.

An equivalence relation is a relation that expresses the idea that two
elements are the same in some sense. The relation ‘is equivalent to’ on the
set of logical expressions is another example of an equivalence relation –
two logical expressions are equivalent if they have the same truth table.

If an equivalence relation is defined on a set, then the elements that are
related to each other can be grouped together into subsets. For example, if the
relation is ‘has the same parents as’, defined on the set of all people, then all
the people with one particular set of parents form one subset, the people with
another set of parents form another subset, and so on. (Some of the subsets
may contain only one person.) Each person belongs to exactly one subset. We
say that the set of all people has been partitioned into disjoint subsets.

In the same way, the set of integers can be partitioned into subsets in
which all the elements have the same parity. There will be two subsets: the
set of even numbers and the set of odd numbers.

The process of forming a partition will not work if the relation is not an
equivalence relation. For example, ‘less than’ is not an equivalence
relation (because it is neither reflexive nor symmetric), and it makes no
sense to define a ‘set of numbers that are all less than each other’.

These ideas are summarised in the following definition and theorem.

Definition Let A be a set. A partition of A is a set of subsets of A such that every
element of A is an element of exactly one of the subsets.

Theorem Let A be a set, and let R be an equivalence relation on A. For each element
x of A, let E(x) be the subset of A defined by E x y A y R x( ) { : }) ! . Then
the set of all the subsets E(x) is a partition of A.
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The subsets E(x) are called the equivalence classes of the relation R.
Example 5.5.5 illustrates these ideas. This example might seem rather

abstract now, but we will refer to it again when we study modular
arithmetic in Chapter 12. Modular arithmetic has important applications
to topics such as information coding and the computer generation of
pseudo-random numbers for simulation modelling.

Example 5.5.5 Let R be the relation on the set J of integers defined by the rule: x R y if
x – y is divisible by 4 (that is, x – y = 4n for some integer n). Show that R
is an equivalence relation, and describe the equivalence classes.

Solution If x is any integer, then x – x = 0, which is divisible by 4. Therefore R is
reflexive.

Suppose x – y is divisible by 4. This means that there is an integer n
such that x – y = 4n. Then y – x = –4n, which is divisible by 4. Therefore R
is symmetric.

Suppose x – y and y – z are both divisible by 4. This means that there
are integers m and n such that x – y = 4m and y – z = 4n. Then x – z =
x – y + y – z = 4m + 4n = 4(m + n), which is divisible by 4. Therefore R is
transitive.

Since R is reflexive, symmetric and transitive, R is an equivalence
relation.

We begin the task of describing the equivalence classes by choosing an
element of J and describing the equivalence class containing that element.
Suppose we choose 0. The equivalence class E(0) is { : }y y R!J 0 ; in
words, it is the set of all the integers y such that y – 0 is divisible by 4. This
is simply the set of all multiples of 4 (positive, negative and zero):

E(0) = {..., –12, –8, –4, 0, 4, 8, 12, ...}

Now we choose another element of J, say 1. Then E(1) will contain all the
integers y such that y – 1 is divisible by 4:

E(1) = {..., –11, –7, –3, 1, 5, 9, 13, ...}

In the same way, we can find the equivalence class containing 2:

E(2) = {..., –10, –6, –2, 2, 6, 10, 14, ...}

Finally, we have the equivalence class containing 3:

E(3) = {..., –9, –5, –1, 3, 7, 11, 15, ...}

The process of finding the equivalence classes stops here, because the
equivalence class containing 4 has already been found; it is the same as
the one containing 0. Notice that the four equivalence classes form a
partition of J, because every integer can be found in exactly one
equivalence class.

It is worthwhile studying carefully the process we have used here to
show that R is an equivalence relation, because this approach is used in
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similar problems. In order to show that a relation is an equivalence
relation, we need to do three things:

show that it is reflexive
show that it is symmetric
show that it is transitive

The first step is to determine what that means for the particular relation
given in the problem. This means that the definitions of ‘reflexive’,
‘symmetric’ and ‘transitive’ must be interpreted for the problem at hand.
For example, in order to show that a relation R is transitive, we must
show that if x R y and y R z then x R z. In Example 5.5.5, this meant we
had to show that if x – y is divisible by 4 and y – z is divisible by 4 then x – z
is divisible by 4. Once we have established what needs to be shown, we are
already halfway there; the process of actually showing it is not necessarily
difficult.

Before we leave equivalence relations, we will look at a (fairly informal)
proof of the theorem that the equivalence classes E(x) form a partition of
A. In order to carry out the proof, we need to show that every element of
A belongs to exactly one equivalence class.

It is easy to show that any element x of A belongs to at least one
equivalence class. Since R is reflexive, we have x R x, so x E x! ( ).

Showing that no element belongs to more than one equivalence class
takes a bit more work. We can do it using proof by contradiction.
Suppose that E(x) and E(y) are two different equivalence classes, and
suppose that they do have an element in common, say z. We now apply
the following chain of reasoning:

Let w be any element of E(x).
Then w R x (by the definition of E(x)).
Since z E x! ( ), we also have z R x (again using the definition of E(x)).
Therefore x R z (because R is symmetric).
Since w R x and x R z, we deduce that w R z (because R is transitive).
Since z E y! ( ), we have z R y (by the definition of E(y)).
Since w R z and z R y, we deduce that w R y (because R is transitive).
Therefore w E y! ( ) (by the definition of E(y)).

What we have just shown is that any element of E(x) must also be an
element of E(y). A similar chain of reasoning shows that any element of
E(y) must be an element of E(x) (just interchange the roles of x and y in
the argument above). Therefore E(x) = E(y), which contradicts the fact
that E(x) and E(y) are two different equivalence classes. We conclude that
the assumption that E(x) and E(y) have an element in common must be
false. Therefore, no element of A can belong to more than one
equivalence class.

Another type of relation, called a partial order relation, also occurs in
many situations in computing. Its definition is given below.
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Definition A relation is a partial order relation if it is reflexive, antisymmetric and
transitive.

Here are some examples of partial order relations:

The relation'on the set of real numbers.
The relation&on the power set of a set.
The relation ‘is divisible by’ on the set of natural numbers.
The relation ‘is a subexpression of’ on the set of logical expressions
(with a given set of variables).

As an example of the last one, p, q, p q, ,4 p and ( )p q p, 54 are the
subexpressions of ( )p q p, 54 .

If a partial order relation is defined on a set, we can regard the
elements of the set as forming a hierarchy in which some elements are
‘bigger’ in some sense while others are ‘smaller’. The word ‘partial’ refers
to the fact that not all pairs of elements need to be related one way or the
other; for example, if A and B are sets, it is not necessarily true that either
A B& or B A& . By contrast, it is true that if x and y are real numbers, then
either x y' or y x' ; we express this fact by saying that' is a total order
relation on R.

Partial order relations occur in many areas of computing. One example
arises if we have a computer program consisting of a number of modules:
the main program, the subprograms called by the main program, the
subprograms called by these subprograms, and so on. We can define a
relation R on the set of modules {M1, M2, ..., Mn}, using the rule: Mi R Mj
if Mi is in the calling sequence of Mj (that is, Mj is the same module as Mi
or Mj calls Mi or Mj calls a module that calls Mi or ...). You can check that
R is reflexive and transitive. If R is not antisymmetric then circular calls
are possible, such as two modules calling each other. The use of such
‘recursive’ calls must be avoided in programming languages that do not
support recursion, but it can also be a powerful programming technique
when it is available, as we will see when we study recursion in Chapter 7.
If we are not using recursive calls, then R is a partial order relation.
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EXERCISES
1 Write the following sets in enumerated form:

(a) The set of all vowels.
(b) {x!N:10 20' 'x and x is divisible by 3}
(c) The set of all natural numbers that leave a remainder of 1

after division by 5.
2 Write the following sets in predicate form:

(a) {4, 8, 12, 16, 20}
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(b) {000, 001, 010, 011, 100, 101, 110, 111}
(c) {1, 4, 9, 16, 25, ...}

3 Let A = {1, {1}, {2}, 3}. Determine which of the following
statements are true and which are false:
(a) 1!A (b) 1&A
(c) { }1 !A (d) { }1 &A
(e) {{ }}1 &A (f) 2!A
(g) { }2 !A (h) { }2 &A
(i) { }3 !A (j) { }3 &A

4 Let ! = { : }x x! 'N 12 . Let A = {x: x is odd}, B = {x: x > 7}, and
C = {x: x is divisible by 3}. Depict the sets on a Venn diagram.
Hence write down the following sets in enumerated form:
(a) A B(
(b) B C+
(c) A
(d) ( )A B C+ (

(e) A C C+ +

5 Illustrate the first distributive law, A B C A B A C( + ) ( + (( ) ( ) ( ),
using Venn diagrams.

6 Illustrate the second absorption law, A A B A+ ( )( ) , using Venn
diagrams.

7 Show that A B A B( ) + using the laws of sets.
8 Is the statement ‘any set with n elements has 2n subsets’ true

when n = 0?
9 Let A = {a, b, c} and B = {p, q}. Write down the following sets in

enumerated form:
(a) A × B (b) A2 (c) B3

10 Express each of the following sets as a Cartesian product of sets:
(a) The set of all possible 3-course meals (entrée, main course

and dessert) at a restaurant.
(b) The set of car registration plates consisting of three letters

followed by three digits.
(c) The set of all possible outcomes of an experiment in which a

coin is tossed three times.
11 Let ! = {0, 1, 2, ..., 15}.

(a) Find the representation of {2, 4, 5, 7, 11, 14} as a bit string.
(b) Write down the set represented by the bit string 1010 0110

1110 1001.
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(c) If A and B are represented by the bit strings 0011 0100 0110
1101 and 1010 1001 0001 0111, find the representations as bit
strings of A B( , A B+ , A and B.

12 Write an algorithm to obtain the bit string representation of A – B
from the bit string representations of A and B, where A and B are
subsets of a universal set ! with n elements.

13 Consider the following algorithm:
1. Input a bit string b
2. n6 the unsigned integer with b as its binary representation
3. count6 0
4. While n > 0 do

4.1. n n n6 , *( )1
{‘,’ denotes bitwise ‘and’, applied here to the binary
representations of n and n – 1}

4.2. count count6 *1
5. Output count
Show that the output is the number of 1s in b. (You might find it
helpful to trace the algorithm with a few different inputs first.)

14 Consider the following sequence of steps in pseudocode, where x
and y are bit strings of equal length:
1. x x y6 7 {7 denotes bitwise exclusive-or}
2. y x y6 7
3. x x y6 7

Show that the effect of the sequence of steps is to swap the values
of x and y.

15 Let A = {1, 2, 3, 4, 5}, and let R be the relation on A defined as
follows:

R = {(1, 3), (1, 4), (2, 1), (2, 2), (2, 4), (3, 5), (5, 2), (5, 5)}

(a) Write down the matrix representation of R.
(b) Draw the graphical representation of R.

16 Let R be the relation on {a, b, c, d} defined by the following
matrix:

a b c d
a

b

c

d

T F T F

F T T F

F T T F

F F F T

.

/

0
0
0
0

1

2

3
3
3
3

(a) Draw the graphical representation of R.
(b) State, giving reasons, whether R is reflexive, symmetric or

transitive.



93

Sets and relations

17 Is the matrix representation of a relation unique, or could the
same relation be represented by two different matrices?

18 Determine whether each of the following relations is reflexive,
irreflexive, symmetric, antisymmetric or transitive:
(a) ‘is a sibling (brother or sister) of’, on the set of all people;
(b) ‘is the son of’, on the set of all people;
(c) ‘is greater than’, on the set of real numbers;
(d) the relation R on the set of real numbers, defined by x R y if

x2 = y2;
(e) ‘has the same integer part as’, on the set of real numbers;
(f) ‘is a multiple of’, on the set of positive integers.

19 Determine which of the relations in Exercise 18 are equivalence
relations. For those that are equivalence relations, describe the
equivalence classes.

20 Determine which of the relations in Exercise 18 are partial order
relations.

21 A computer program consists of five modules: M1, M2, ..., M5. A
relation R on the set of modules is defined by the rule: Mi R Mj if
Mi is in the calling sequence of Mj. The relation matrix for R is
shown below:

M M M M M
M
M
M
M
M

1 2 3 4 5

1

2

3

4

5

T F T T F

F T T F F

F F T F F

F F T T F

F F T T T

.

/

0
0
0
0
0
0

1

2

3
3
3
3
3
3

(a) Verify that R is reflexive, antisymmetric and transitive.
(b) Which module is the main program?
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