
Functions

6.1 Functions and computing

If you have already studied functions in mathematics, it is likely that what
you were studying was a type of function known as a ‘real-valued function
of a real variable’. If this is the case, then you probably think of a function
as ‘something that has a mathematical formula’ such as x2 – 2x + 3, or
‘something you can draw the graph of’ using x and y axes.

In computing (and in many areas of mathematics, for that matter), we
take a different approach to functions, which turns out to be more useful.
Our definition of a function is considerably more general, and in most
cases it will not be possible to draw graphs of the functions we will be
studying. The way we think about functions will also be somewhat
different. The functions used in programming in high-level languages
(both the functions available in libraries associated with those languages
and the function subprograms that you write yourself) are usually
functions in this more general sense (with some qualifications, as we will
see later). Functions of a real variable will be needed in Chapter 13 when
we study the time complexity of algorithms.

Definition Let X and Y be sets. A function from X to Y is a rule that assigns to each
element of X exactly one element of Y.

We will generally use lower case letters such as f, g and h to denote
functions. Greek letters such as ! (phi) are also commonly used. If f is a
function from X to Y, we indicate this by writing f X Y: " . X is called the
domain of f, and Y is the codomain.

If f X Y: " is a function with domain X and codomain Y, and if x is any
element of X, then according to the definition there is exactly one element
of Y assigned to x. That element is called the image of x, and is written
f(x).

For our first example, we will take a function you have probably seen
before, and see how it can be viewed in the light of the definition.

Let the function f be defined as follows:

f , f x x: ()R R" # 2

94

C

H

A

P

T

E

R

6

This function assigns to each element of its domain R (that is, to each
real number) an element of its codomain (which is also R). The rule that
specifies which element to assign is f(x) = x2, that is, the function f assigns
to each real number the square of that number. If we pick any element of
the domain, we can find the image of that element; for example, f(5) = 25,
f(–3) = 9, f ()2 2# . We see that every element of the domain R has a
unique image, and each such image is an element of the codomain R. This
ensures that f is a function, according to the definition.

A helpful way of thinking about this function is to imagine a machine
that accepts input and produces output:

The function f is a ‘squaring machine’. We may feed in any element of the
domain (that is, any real number) as input, and the machine will square it
and output the result. We can think of the symbol f as standing for the
process of squaring a number. The domain of f is the set of valid inputs,
and the codomain is a set to which all of the possible outputs belong.

It is important to be clear about what the notation means – f(x) denotes
the element of the codomain that is the image of an element x of the
domain, whereas f by itself is the name of the function, and represents the
process that the function carries out. We could have written the rule for
the function as f(y) = y2 and it would still be the same function, because it
carries out the same squaring process. In the terminology of predicate
logic, the variable x in the rule for the function is a bound variable,
because the rule really means ‘$ #x f x x[()]2 ’.

We want to make one more observation before we leave this example.
It concerns the codomain R, to which all the images f(x) belong. Notice
that some elements of the codomain are not images of anything. For
example, –1%R, but –1 is not the image of any element of the domain,
because the square of a real number cannot be negative. There is nothing
in the definition of a function to say that all of the codomain has to be
‘used’; the set of images of elements of the domain is a subset of the
codomain, and it can be a proper subset.

If f X Y: " is any function, the set of images { : ()y Y y f x% # for some
x X% } is called the range of f. The range of a function is a subset of the
codomain.

In the example, the range of f is the set of non-negative real numbers:
{ : }y y&0 .

The function we have just been looking at is an example of a real-
valued function of the kind you might study in a calculus course. In the
next few examples we want to consider other types of functions, especially
those that might occur in problems related to computing.

For our second example of a function, let A = {1, 2, 3} and B = {1, 2, 3, 4}.
Let f be the function defined in the following way:

f A B f f f: , () , () , ()" # # #1 3 2 2 3 2

95

Functions

This is a perfectly well defined function (although it is probably not a
very useful one). It doesn’t have a ‘formula’ like x2, but that doesn’t
matter. All that matters is that every element of the domain has exactly
one image, and that image is an element of the codomain. The elements of
the domain A are 1, 2 and 3, their images are 3, 2 and 2 respectively, and
these images are all in the codomain B. That is all that is needed in order
for f to be a function. We see that the elements of B that occur as images
are 2 and 3, so the range of f is {2, 3}.

While it would be possible to draw a graph of this function in the
conventional sense, it would not be particularly useful to do so. A more
appropriate way of depicting a function like this is by means of an arrow
diagram. The arrow diagram for f is shown in Figure 6.1. Notice that
exactly one arrow emerges from each element of the domain. This must
always be the case if the diagram is to represent a function.

For our third example, let C be the set of all ASCII characters. Recall
that each ASCII character has a unique character code in the range of
integers from 0 to 127, and conversely that each integer in that range is
the ASCII code of exactly one character. We can define the following
functions:

ord C ord c c
chr

: { , , , , }, ()

:{ , , ,

" #0 1 2 127

0 1 2

! ASCII code of

!, } , ()127 " #C chr n ncharacter with ASCII code

(The notation ord and chr for these functions is used in Pascal.)
In order to find the image of an element of the domain of either of

these functions, we would need to refer to a table of ASCII characters. For
example, by looking up an ASCII table we find that ord(‘A’) = 65, ord(‘a’)
= 97, and ord(‘*’) = 42. It follows immediately that chr(65) = ‘A’, chr(97)
= ‘a’, and chr(42) = ‘*’.

Each of the functions ord and chr has for its range the entire codomain
of the function.

Example 6.1.1 Let X = {finite non-empty strings of bits} and Y = {0, 1, 2, 3, ...}.
Determine whether the following functions are well defined:

(a) f X Y: " , f(s) = number of ones in s
(b) g X Y: " , g(s) = first bit of s
(c) h X Y: " , h(s) = position in the string of the leftmost zero of s
(d) j X X: " , j(s) string obtained by appending 0 or 1 to s
(e) k Y X: " , k(n) string of n ones

96

Discrete mathematics for computing

Figure 6.1

Solution (a) Given any finite non-empty string of bits, s, it is always possible to
find the number of ones in s, and the result is always an element of Y.
Therefore f is a function.

(b) The first bit of a finite non-empty string can always be found, and it is
either 0 or 1. Since 0 and 1 are both elements of Y, g is a function.

(c) Some bit strings do not contain zeros, so h is not well defined.
(d) The image of an element is not uniquely determined, because either 0

or 1 can be appended, so j is not well defined.
(e) Given any element n of Y, it is possible to write down a string of n

ones. However, if n = 0 the string will be the empty string, which is
not an element of X. Therefore k is not well defined.

We have already seen examples in which the range of the function is
not all of the codomain. The next definition refers to the situation where
the range is the entire codomain.

Definition A function is onto if its range is equal to its codomain.

Equivalently, a function is onto if every element of the codomain is the
image of at least one element of the domain. (The use of ‘onto’ as an
adjective may seem strange, but the terminology is well established.)

It is possible for two different elements of the domain of a function to
have the same image in the codomain. In our first example (the ‘squaring’
function), 2 and –2 have the same image: f(2) = 4 and f(–2) = 4. The next
definition provides the terminology for the functions for which this does
not happen.

Definition A function is one-to-one if no two distinct elements of the domain have
the same image.

In order to show that a function f is one-to-one, we need to show that if
x1 and x2 are elements of the domain and x x1 2' , then f x f x() ()1 2' . (In
practice, it is usually easier to prove the contrapositive: if f(x1) = f(x2),
then x1 = x2.) In order to show that a function is not one-to-one, on the
other hand, it is sufficient to find two elements of the domain with the
same image (as we did with the ‘squaring’ function).

Example 6.1.2 For each of the following functions, determine whether the function is
onto and whether it is one-to-one:

(a) f f x x: , ()R R" # (2 1

97

Functions

(b) The function ord defined earlier
(c) The function chr defined earlier
(d) The function f in Example 6.1.1(a)
(e) The function g in Example 6.1.1(b)
(f) ! !: , ()X X s" #string obtained by appending 0 to s (with X as

defined in Example 6.1.1)

Solution (a) If y%R, then we can set y = 2x + 1 and solve for x, obtaining
x = (y – 1)/2. Therefore every element y of the codomain is the image
of the element (y – 1)/2 of the domain. Thus f is onto.
We show that f is one-to-one by proving the contrapositive of the
definition. Suppose f(x1) = f(x2). Then:

2x1 + 1 = 2x2 + 1

Hence 2x1 = 2x2

so x1 = x2

Therefore f is one-to-one.
(b) Every integer from 0 to 127 is the ASCII code of a character in the

ASCII character set, so ord is onto. No two characters have the same
code, so ord is one-to-one.

(c) Every character has an ASCII code, so chr is onto. No two codes
correspond to the same character, so chr is one-to-one.

(d) Recall that the function is f X Y: " , f(s) = number of ones in s.
Is every element of Y the image of something? In other words, if we
count the number of ones in a string of bits, could we get any of the
numbers 0, 1, 2, ... as the result? The answer is yes, so f is onto.
Is it possible for two different elements to have the same image? In
other words, could two different strings of bits yield the same result
when we count the number of ones? The answer is clearly yes (101
and 110 is one of many examples), so f is not one-to-one.

(e) Recall that the function is g X Y: " , g(s) = first bit of s.
Is every element of Y the image of something? No; 2 is not the image
of any element of X, so g is not onto.
Can two different elements have the same image? Yes; 00 and 01, for
example, so g is not one-to-one.

(f) Is every element of X the image of something? No; 01 is not, because
it doesn’t end in 0. Therefore ! is not onto.
Can two different elements have the same image? If so, this would
mean that two different bit strings would give the same bit string
when 0 is appended to them, which is clearly impossible. Therefore !
is one-to-one.

98

Discrete mathematics for computing

The solution to Example 6.1.2 reinforces an important point made in
Chapter 5 when we studied equivalence relations. You have already made
a substantial step towards solving a mathematical problem when you
have identified just what it is that you need to show. In order to
determine whether a function is onto, you need to ask yourself: Is every
element of the codomain the image of something in the domain? In order
to determine whether a function is one-to-one, the question you need to
ask is: Can two different elements of the domain have the same image?
You then need to interpret the question in the context of the particular
problem. This is what we were doing in Example 6.1.2.

Sketching an arrow diagram can also help you to decide whether a
function is onto and whether it is one-to-one. Some examples of typical
arrow diagrams for the various types of functions are shown in Figure 6.2.

The last diagram in Figure 6.2 is not the arrow diagram of a function,
because it fails the requirement that every element of the domain must
have exactly one image. (Note that the terms ‘onto’ and ‘one-to-one’
apply only to functions. If you have determined that what you have been
given is not a function, then the question of whether it is onto or one-to-
one does not arise.)

6.2 Composite functions and the inverse of a function

Suppose f and g are two functions. If we think of f and g as machines with
input and output, we could imagine linking them together so that the
output of f becomes the input of g:

This will work only if the output from f belongs to the domain of g. In
order to ensure that this is always the case, we will assume that the
codomain of f equals the domain of g. Specifically, let A, B and C be
arbitrary sets, and let f A B: " and g B C: " .

99

Functions

Figure 6.2

We can now think of the combination of the two machines as a single
machine with input x A% and output g f x C(())% . This new machine
corresponds to a function from A to C, called the composite function of f
and g.

The formal definition follows.

Definition Let f A B: " and g B C: " be functions. The composite function of f and g
is the function:

Notice that g f" needs to be read from right to left: it means first apply f,
then apply g to the result.

Although real-valued functions are only of minor importance for our
purposes, we will use them in our first example because you are likely to
be more familiar with them.

Example 6.2.1 Let f :R R" , f(x) = x2 and g:R R" , g(x) = 3x – 1. Find f g" and g f" .

Solution Note firstly that the composite function f g" exists because the codomain
of g equals the domain of f. Similarly, g f" exists because the codomain of
f equals the domain of g.

The function f g" is found as follows:

where the last line is obtained by substituting 3x – 1 in place of x in the
formula for f(x).

The function g f" is obtained in a similar manner:

The two composite functions in the last example can be depicted in the
following way:

100

Discrete mathematics for computing

: ,()() (())g f A C g f x g f x=" ""

2

: ,()() (())

(3 1)

(3 1)

f g f g x f g x

f x

x

=
= -

= -

R R" ""

2

2

: ,()() (())

()

3 1

g f g f x g f x

g x

x

=

=

= -

R R" ""

Example 6.2.2 Let X be the set of all finite non-empty strings of characters. Let the
functions f and g be defined as follows:

f X f s: , ()" #N number of characters in s

g X X G s: , ()" #string obtained by appending ‘a’ to s

State whether the following functions exist. For those that do exist,
describe the function as simply as possible.

(a) f f"

(b) f g"

(c) g f"

(d) g g"

Solution (a) The codomain of f does not equal the domain of f, so f f" does not
exist.

(b) The codomain of g equals the domain of f, so f g" exists. The
composite function appends ‘a’ to a string and counts the number of
characters in the resulting string. It can be described in the following
way:

(c) The codomain of f does not equal the domain of g, so g f" does not
exist.

(d) The codomain of g equals the domain of g, so g g" exists. The
composite function appends ‘a’ to a string, then appends ‘a’ to the
resulting string:

g g X X g g s" ": , ()()" #string obtained by appending ‘aa’ to s

We now turn to the problem of defining the inverse of a function. In
Section 6.1, we defined the following two functions:

101

Functions

: ,()() (number of characters in) 1f g X f g s s= +N" ""

: {0,1,2,...,127}, () ASCII code of

: {0,1,2,...,127} , () character with ASCII code

ord C ord c c
chr C chr n n

=
=

"

"

There is a close relationship between ord and chr. Firstly, the domain of
ord equals the codomain of chr, while the codomain of ord equals the
domain of chr. Secondly, each function ‘undoes’ or reverses the effect of
the other; ord converts a character to its corresponding code, while chr
converts a code to its corresponding character. We express this fact by
saying that ord and chr are inverses of each other.

This idea can be made more precise by looking at the composite functions
ord chr" and chr ord" . The functionord chr" !: { , , , , }0 1 2 127 "{ , , , , }0 1 2 127!

converts a number to the corresponding character, and then converts the
resulting character back to the original number. The overall effect oford chr"

is to leave every number unchanged. Similarly, the function chr ord C C" : "
has the overall effect of leaving every character unchanged.

Before we can define the inverse of a function formally, we need
another definition.

Definition Let A be a set. The identity function on A is the function:

i A A i x x: , ()" #

The identity function is a ‘do nothing’ function; it simply maps each
element of A to the element itself. It can be thought of as a machine that
outputs anything it receives as input.

While it has to be admitted that the identity function on a set is not a
very interesting function, it does have some important properties. Firstly,
it is one-to-one and onto. Secondly, if f is any function with domain A,
and if i denotes the identity function on A, then f i" is the same function
as f itself. Similarly, if g is a function with codomain A, then i g" is the
same function as g.

We can now give the formal definition of the inverse of a function.

Definition Let f A B: " and g B A: " be functions. If g f A A" : " is the identity
function on A, and if f g B B" : " is the identity function on B, then f is the
inverse of g (and g is the inverse of f).

Not every function has an inverse, as we will see shortly. If a function
does have an inverse, it can have only one.

The inverse of a function f is denoted by f–1. It is best to think of this
simply as the notation for the inverse of a function as defined above.
Don’t think of it as ‘f to the power of –1’, as it is quite different from
raising a number to the power –1, for example 2 1 1

2
) # . In particular, we

never write 1/f for the inverse of f.
The domain of f–1 is the codomain of f, and vice versa. We can think of

f–1 as a machine that ‘reverses’ f – it takes any valid output of f as its own
input, and produces as output the corresponding input of f.

Discrete mathematics for computing

102

Example 6.2.3 Let f: {a, b, c}" {1, 2, 3}, f(a) = 2, f(b) = 3, f(c) = 1. Find f–1.

Solution The domain of f–1 is the codomain of f and vice versa. The rule for f–1 is
obtained by reversing the rule for f:

The arrow diagrams for the functions f and f–1 in Example 6.2.3 are shown
in Figure 6.3. The diagram for the inverse is obtained by reversing the
arrows; the arrow from c to 1 becomes an arrow from 1 to c, and so on.

The arrow diagram gives us a clue to the situations in which a function
has no inverse. If f is not onto, the arrow diagram obtained by reversing
the arrows will have elements of the domain with no image, and therefore
it cannot represent a function. If f is not one-to-one, the reversed diagram
will have at least one element with two images, so it cannot represent a
function in this case either. This observation is summarised in the
following theorem.

Theorem A function f has an inverse if and only if f is onto and one-to-one.

If a function f X Y: " is onto and one-to-one, then f establishes an exact
one-to-one correspondence between the elements of X and the elements
of Y. It follows that X and Y must have the same cardinality. We will see a
practical consequence of this fact shortly.

Example 6.2.4 Determine which of the following functions have inverses:

(a) f f x x: , ()R R" # (2 1
(b) g g x x: , ()R R" # 2

(c) h x x x x h x x: { : } { : }, ()% & " % & #R R0 0 2

Solution (a) This function is onto and one-to-one, so f–1 exists. To find a formula
for the inverse function, write x = 2f–1(x) + 1 and solve for f–1(x) to
obtain f–1(x) = (x – 1)/2. Intuitively, f ‘doubles and adds 1’, while f–1

‘subtracts 1 and divides by 2’, which is the reverse process.
As a check on the answer, note that

103

Functions

1 1 1 1: {1,2,3} {a, b, c}, (1) c, (2) a, (3) bf f f f- - - -Æ = = =

Figure 6.3

and similarly that ()()f f x x) #1
" .

(b) This function is neither onto nor one-to-one, so it has no inverse.
(c) Notice that this is not the same function as the one in (b), because

both the domains and the codomains are different. The function h is
one-to-one, because it is impossible for two non-negative real
numbers to have the same square. The function is also onto. The rule
for the inverse function is h x x) #1() .

Here is an example of a practical situation where inverse functions
arise. It is often desirable to encrypt a confidential message prior to
transmitting it via a possibly insecure channel, in order to ensure that it
cannot be read by an unauthorised person. Let X be the set of all possible
original messages, and let Y be the set of all encrypted messages. Then the
code used to carry out the encryption process can be thought of as a
function f X Y: " . In order to ensure that any message can be decoded,
there must be an inverse function f Y X) "1: to carry out the decoding
process. This means that any function f that we might consider using to
perform the encryption must be one-to-one and onto.

A similar situation arises with software for file compression. The
process of compressing a file so that it occupies less space on a disk can
be thought of as an encryption process corresponding to a function f. The
data in a file is stored on a disk as a finite (and non-empty) string of bits,
and we will assume that there is an upper limit N on the number of bits in
any file. If we also assume that no string of N bits or fewer can be ruled
out as the possible contents of a file, then the domain of f is the set X of all
bit strings with N bits or less. The codomain is the set Y of those bit
strings that can occur as the contents of a compressed file.

The function f must have an inverse function f–1 to perform the process
of expanding a compressed file to retrieve the original data. This means
that f must be one-to-one and onto, and therefore that X and Y must have
the same cardinality. Of course, we would also like the function f to have
the property that each compressed file is smaller than the corresponding
original file. Can we find such a function?

The answer is no! If each compressed file is smaller than the original
file, then Y must contain only files with fewer than N bits. This makes Y a
proper subset of X, so Y must contain fewer elements than X. We arrive at
the following surprising conclusion: there is no file compression algorithm
that compresses every file.

It is actually possible to prove an even stronger statement: Any file
compression algorithm that makes at least one file smaller must also
make at least one file larger.

The file compression utilities in common use can be very effective in
compressing most of the files that occur in practice. With any such

104

Discrete mathematics for computing

1 1 1 1
()() (()) 2 1 ,

2 2
x x

f f x f f x f x- - - -Ê ˆ Ê ˆ= = = + =Á ˜ Á ˜Ë ¯ Ë ¯"

program, however, there must always be files that cannot be compressed
with that program.

6.3 Functions in programming languages

Most programming languages (including spreadsheet and database
languages) include a construct called a ‘function’ as part of the language.
There are typically many functions available in function libraries, and
programmers can also write their own functions. How are these functions
related to functions in the mathematical sense?

Spreadsheet software typically includes a comprehensive library of
functions for manipulating data stored in a spreadsheet. These functions
can be interpreted as functions in the sense we have been using in this
chapter. Some of the functions available in spreadsheets are mathematical
functions in the familiar sense. For example, The function ABS takes a
real number x as input, and returns its absolute value | x | as output. We
can therefore take the domain and codomain to be the set of real
numbers, and write:

ABS:R R"

Strictly speaking, we are using R here to denote the set of computer
representations of real numbers, rather than the set of real numbers in the
mathematical sense.

Another example of a spreadsheet function is a function to determine
whether the content of a cell is a text string. Such a function might be
called ISTEXT. ISTEXT can take as input an item of data of any type
(character string, number value or logical condition), or (more usually)
the address of a cell in the spreadsheet. The output is TRUE if the input
data (or the data contained in the cell address) is a text string, and FALSE
if it is not. If X denotes the set of all valid items of data and all valid cell
addresses, then:

ISTEXT: X" {TRUE, FALSE}

A third example is provided by a function, LEFT, which takes two
arguments: a character string s and a natural number n, and returns as
output the string consisting of the first n characters of s; for example,
LEFT(“Hello”, 3) = “Hel”. If we want to interpret LEFT as a function in
the mathematical sense, we must write the domain as a Cartesian product.
If S denotes the set of all character strings, then:

LEFT: S S* "N

The term ‘function’ in spreadsheet programs also embraces constants
such as PI, which returns a numerical approximation to +. This ‘function’
has no arguments (think of a machine that outputs the value of +without
needing any input). Somewhat artificially, we can think of PI as a function
whose domain contains one (unspecified) element:

PI: {*}"R, PI(*) = 3.1415926

105

Functions

This is really stretching our definition of ‘function’!
Programming languages such as Pascal and C, in addition to providing

standard libraries of functions, allow you as the programmer to write
your own functions. In both Pascal and C, the syntax rules for the
language require you to specify the data types of the input and output in
the statement that heads the function subprogram. A typical function
header in Pascal might look like this:

function f(x: char; y: real): integer;

In C, the header would look like this:

int f(char x, float y)

The body of the function follows the header, and includes an algorithm
for evaluating the function in terms of the arguments x and y.

If we treat this as a mathematical function f, then the domain of f is a
subset of C × R, where C denotes the set of all characters available on the
machine, and we can take the codomain to be J.

In many programming languages, however, it is possible for the value
returned by a function to depend on more than just the arguments (it can
depend on the value of a global variable, for example). A function can
also produce ‘output’ in addition to the value it returns (by changing the
value of a global variable, for example, or by writing a message to the
screen). Because of these ‘side-effects’, a function can return two different
results when it is called twice with the same arguments. In C and some
other languages, a function need not return a value at all. For these
reasons, a function in a programming language may not be a function in
the mathematical sense.

One example of a function with side-effects is a pseudo-random
number generator. Pseudo-random number generators are available as
standard library functions in many programming languages, and are
widely used in simulation software. A typical pseudo-random number
generator might produce a different real number in the interval from a to
b each time it is called with arguments a and b. At first sight, it might
appear to be a function in the mathematical sense:

random random a b: , (,)R R R* " #a random number between a and b

When we use random in a program, we might find, for example, that
random(0,1) = 0.3982473 on the first call and random(0,1) = 0.8194702 on
the second call. Since the result is not uniquely determined by the values
of the two arguments, we conclude that random does not qualify as a
function in the mathematical sense of the word.

In this chapter, we have introduced the powerful notion of a function
from any set to any other set, and we have seen how functions in this
general sense arise in computing contexts. Functions play a central role in
mathematics, and they will appear frequently in the chapters that follow.

106

Discrete mathematics for computing

107

Functions

EXERCISES
1 Determine whether the following functions are well defined. For

those that are well defined, state the domain, codomain and
range.

(a) f f x
x

: , ()R R" #
3

(b) g g x
x

: , ()J J" #
3

(c) h h n n: { , , } { , , }, ()1 2 3 1 2 3 1" # (

(d) d d n: , ()N N" #number of digits in the decimal
representation of n

(e) ! !: , () /X x x" #R 1 , where X is the ‘maximal’ domain (that
is, the largest subset of R such that 1/x is well defined when
x X%)

(f) ispositive ipositive x
x

: { , }, ()R" #T F
T if is positive

F if is negativex

,
-
.

(g) r r n: , ()N J" #remainder after n is divided by 6
(h) / /: , ()S S s" #string obtained by removing the last

character from s (where S is the set of finite non-null
character strings)

2 Determine which of the following functions are one-to-one and
which are onto:
(a) f S S f s: , ()" #string obtained by reversing the order of the

characters of s (S = {finite non-null character strings})
(b) g g x y x y: , ((,))R R R* " # (

(c) s s n n: , ()N N" # (1
(d) h: {English words}" {letters}, h(w) = first letter of word w
(e) b: N" {finite non-null bit strings}, b(n) = binary

representation of n (written without leading zeros)
(f) card: (A)" 0 #N { }, ()0 card X the cardinality of the set X

(where A denotes any finite set)
3 A function f: {1, 2, 3, 4, 5}" {0, 1, 2, 3, 4} is defined by the rule:

f(n) is the remainder after 3n is divided by 5. Draw an arrow
diagram for this function. Hence state whether f is one-to-one
and whether f is onto.

4 For the purpose of error detection, numeric codes (such as ID
numbers) often include a final ‘check digit’.
Suppose a numeric code consists of a string of 9 digits x1x2...x9,
followed by a final check digit x10 defined to be the rightmost
decimal digit of x1 + 2x2 + 3x3 + ... + 9x9.
(a) Verify that 2516238674 is a valid code.

108

Discrete mathematics for computing

(b) Let X be the set of all strings of 9 digits, let Y be the set of all
digits, and let f X Y: " be the function that assigns the
correct check digit to each string, for example f(251623867)
= 4. State, giving reasons, whether f is one-to-one and
whether f is onto.

(c) If an error is made in keying in a code, will the check digit
always detect it? Explain, with reference to your answer to
(b).

5 Let the functions f, g and h be defined as follows:

Find rules for the following functions with domain and codomain
R:
(a) f f" (b) f g"

(c) g f" (d) f h"

(e) h f" (f) g h"

(g) h g"

6 Find the inverse function of each of the following functions, or
explain why no inverse exists:
(a) f f x x: , ()R R" # (3 2
(b) abs abs x x: , () | |R R" #

(c) g g n
n n
n n

: , ()N N" #
(

)

,
-
.

1

1

if is odd

if is even

(d) h S S h s: , ()" # the string obtained by moving the last
character to the beginning of the string, for example
h(‘abcd’) = ‘dabc’ (where S is the set of finite non-null
character strings)

7 Let X be the set of all names of students in a database maintained
by a university. Assume that no two students have the same
name. Let Y be the set of ID numbers of the students. The
functions f and g are defined as follows:

f X Y f x: , ()" # ID number of student with name x

g Y g y: , ()" #N age (in years) of student with ID number y

(a) Describe the functions g f" and f–1.
(b) Explain why g–1 does not exist.

2

: , () 4 3

: , () 1

1 if 0
: , ()

0 if 0

f f x x

g g x x

x
h h x

x

Æ = -

Æ = +
≥Ï

Æ = Ì <Ó

R R

R R

R R

109

Functions

8 Let S be the set of all finite non-null strings of characters. Let
upr S S: " be the function that converts all lower-case letters to
upper-case (and leaves all other characters unchanged).
Similarly, let lwr S S: " be the function that converts all upper-
case letters to lower-case.
(a) Evaluate upr(‘Barbara Hill’) and (lwr upr")(‘Barbara Hill’).
(b) Are upr and lwr inverses of each other? Explain.

9 Let X = {1, 2, 3, ..., 20}, and let Y be the set of non-null strings of
up to 20 characters. Let f be defined as follows:

f X Y f x: , ()" #English word for x (in lower-case letters)

For example, f(1) = ‘one’.
(a) State, giving reasons, whether:

(i) f is one-to-one;
(ii) f is onto;
(iii) f–1 exists.

(b) If g Y X g s: , ()" #number of characters in s, evaluate the
following expressions, where possible:
(i) ()()g f" 7
(ii) ()(‘ ’)g f" seven
(iii) ()()f g" 7
(iv) ()(‘ ’)f g" seven

10 Let f f n: , ()N N" #digital root of n. (Digital roots were defined
in Chapter 1, Exercise 8.)
(a) State, with reasons, whether f is one-to-one and whether f is

onto.
(b) Does f–1 exist? If so, describe it. If not, give a reason.
(c) Does f f" exist? If so, describe it. If not, give a reason.

11 Let A, B, C and D be sets, and let f A B: " , g B C: " and h C D: "
be functions. Prove that () ()h g f h g f" " " "# .

12 Prove that a function cannot have more than one inverse. (Hint:
Let f A B: " be a function, and assume f has two inverses, g1 and
g2. Deduce a contradiction by evaluating g f g1 2" " in two
different ways.)

	Cover
	Title
	Copyright
	Contents
	List of symbols
	Preface
	1 Introduction to algorithms
	2 Bases and number representation
	3 Computer representation and arithmetic
	4 Logic
	5 Sets and relations
	6 Functions
	7 Induction and recursion
	8 Boolean algebra and digital circuits
	9 Combinatorics
	10 Introduction to graph theory
	11 Trees
	12 Number theory
	13 Algorithms and computational complexity
	Answers to exercises
	Index

