
Bases and number
representation

2.1 Real numbers and the decimal number system

Numbers can be represented in various ways. For example, the number
‘four’ can be written in the usual notation as 4, in Roman numerals as IV,
or even just as four tally marks, ||||. Similarly, ‘two-and-a-half’ can be
written as the mixed number 2 1

2, as the improper fraction 5
2 or as the

decimal number 2.5. In particular, numbers can be represented using
systems similar to the familiar decimal system but using a base other than
10. In this chapter, we investigate the representation of numbers using
different number bases, paying particular attention to the number
systems used in computing.

Before we look at other number bases, it is helpful to recall what types
of numbers there are, and how they are represented in the decimal
system:

The natural numbers (also called the positive integers) are the
numbers 1, 2, 3, 4, ...
The integers, or whole numbers, include zero and the negative whole
numbers as well as the natural numbers: ..., –3, –2, –1, 0, 1, 2, 3, ...
The rational numbers are all the numbers that can be expressed in the
form m/n where m and n are integers and n is not zero. Note that this
includes all of the integers, as well as all ‘fractions’, both proper (for
example, 1

2) and improper (for example, 5
3). Any rational number can

also be written as a terminating or recurring decimal, for example
1
4 0 25! . , 1

6 016666! . !

One of the more surprising mathematical facts is that some of the
numbers that we would like to be able to define and use are not rational
numbers. For example, although 2 can be approximated by rational
numbers to any degree of accuracy we choose, it is impossible to find
integers m and n such that m n/ ! 2 exactly. We express this fact by
saying that 2 is an irrational number. (A proof that 2 is irrational will
have to wait until we have studied proof techniques in Chapter 4.) All
roots (square roots, cube roots and so on) of the natural numbers are
irrational numbers, except those roots that are themselves natural

14

C

H

A

P

T

E

R

2
▼

▼
▼

numbers such as 4. The numbers " and e (the base of natural
logarithms) are also irrational. The decimal representation of an
irrational number does not terminate or recur, for example

2 14142135! . ! and "!31415926. !.
All of the numbers we have introduced, both rational and irrational

numbers, are called real numbers. For example, 3, 7
5, –4.38 and 2 3 5# are

all real numbers. Unless you have studied complex numbers elsewhere, all
of the numbers you have encountered in your studies are real numbers.

A real number is written in the decimal system as a string of digits,
preceded by a minus sign if the number is negative. The representation
may also include a decimal point. (If no decimal point is written, there is
an implied decimal point after the last digit.) Some real numbers, such as
1
6 and 2, have non-terminating decimal representations; they cannot be
represented exactly in this system using a finite number of digits.

The decimal system is an example of a positional number system,
because each digit has a place value that depends on its position in
relation to the decimal point. The digit immediately to the left of the point
is the units (or ones) digit (1 = 100). To the left of the units digit is the
tens digit (10 = 101), then the hundreds digit (100 = 102), the thousands
digit (1000 = 103), and so on. Similarly, to the right of the decimal point
are the tenths digit (1

10
110! #), the hundredths digit (1

100
210! #), and so

on. The value of the number is obtained by multiplying each digit by its
place value and adding the results.

For example, the decimal number 2386.75 can be expanded in the
following way:

2386.75 = 2 × 103 + 3 × 102 + 8 × 101 + 6 × 100 + 7 × 10–1 + 5 × 10–2

The decimal system is said to use a base of 10 because the place values
are powers of 10.

2.2 The binary number system

Most of what we have said so far is probably already familiar to you.
Because we use the decimal system all the time, we rarely give it a second
thought, and it is easy to forget that there is no mathematical reason for
using powers of 10 as the place values. The choice of 10 as the base
presumably arose because people in ancient times used their 10 fingers
for counting, but in fact any natural number greater than 1 can be used as
the base of a positional number system.1

A familiar example of something like a non-decimal number system is
the subdivision of an hour into 60 minutes and a minute into 60 seconds,

15

Bases and number representation

1 Actually, the situation is more general than this – negative numbers, and even
complex numbers, can be used as bases. An interesting discussion of the
different number systems that can be constructed appears in Chapter 4 of The
Art of Computer Programming, Vol. 2: Seminumerical Algorithms, 2nd ed., by
D.E. Knuth (Addison-Wesley, 1981).

giving a kind of base 60 number system. For example, a time of 2 hours 26
minutes and 35 seconds can be expressed in seconds as follows:

2 h 26 m 35 s = 2 × 602 + 26 × 601 + 35 × 600 seconds

Notice the similarity of this expression to the expansion of a decimal
number into powers of 10. (The analogy is not perfect, because there are
no names for 603 seconds, 604 seconds, and so on.)

It turns out, for reasons that will be explained later in this chapter, that
the bases 2, 8 and 16, corresponding to what are known as the binary,
octal and hexadecimal systems respectively, are particularly useful in
computing.

The binary system is the positional number system that uses 2 as the
base. Whereas the decimal system uses the 10 decimal digits 0, 1, 2, ..., 9,
the binary system uses the 2 binary digits (or bits) 0 and 1. A positive
number written in the binary system appears as a string of zeros and
ones, and may also include a point (don’t call it a decimal point!); for
example:

1101.012

The subscript 2 denotes the base. The base should always be indicated in
this way in any work involving number systems with bases other than 10.

The place values of the digits in a binary number are powers of 2.
Starting at the point and moving to the left, we have the units digit (1 = 20),
the twos digit (2 = 21), the fours digit (4 = 22), the eights digit, and so on.
To the right of the point are the halves digit, the quarters digit, the eighths
digit, and so on. A binary number can be evaluated (and hence converted
to decimal) by writing it in expanded form:

110101 1 2 1 2 0 2 1 2 0 2 1 2

8 4 1 0 2
2

3 2 1 0 1 2.

.

! $ % $ % $ % $ % $ % $

! % % %

#

5

1325! .

The reason that binary numbers arise so often in computing can be
summarised as follows. In the digital computing systems in common use,
the devices that store data or information of any kind (including
permanent storage media such as a disk, tape or CD, and temporary
media such as random access memory (RAM) in a microchip) consist of a
large number of memory elements, each of which can be in one of two
states (such as magnetised or unmagnetised, on or off). Similarly, when
data is transmitted inside a computer or through a network, it is usually
coded as a stream of signal elements that take one of two forms, such as
the presence or absence of an electric current, or two alternating currents
with different frequencies. (An exception is the modems used for data
communication across telephone networks, which use a set of 256
frequencies.) The manipulation of data to perform arithmetic and other
computations takes place in the digital circuitry etched on a microchip,
which also operates using currents of just two kinds. In short, the data
handled by a digital computer is stored, transmitted and manipulated as a

16

Discrete mathematics for computing

stream of information ‘elements’ of two types, which can be denoted by
the symbols 0 and 1. Thus the binary number system is the most natural
way of representing numbers in a digital computer.

Table 2.1 shows the integers (whole numbers) from 0 to 20 in their
binary and decimal representations.

2.3 Conversion from decimal to binary

How can a number be converted from the decimal to the binary system? It
should come as no surprise that the answer to this question will take the
form of an algorithm. Different processes are used for converting the
integer and fractional parts of a number, so we will consider the two cases
separately, beginning with the integer part.

Examination of Table 2.1 reveals the following pattern:

Odd numbers have a binary representation ending in 1.
Even numbers have a binary representation ending in 0.

These two statements can be summarised as follows:

The last digit in the binary representation is the remainder after
dividing the number by 2.

The first step in carrying out the conversion to binary is therefore to
divide the decimal number by 2, to obtain a (whole number) quotient and
a remainder. We will use the following (Pascal-style) notation to denote
these operations:

17

Bases and number representation

Binary Decimal Binary Decimal

0 0

1 1 1011 11

10 2 1100 12

11 3 1101 13

100 4 1110 14

101 5 1111 15

110 6 10000 16

111 7 10001 17

1000 8 10010 18

1001 9 10011 19

1010 10 10100 20

Table 2.1
▼

▼

n div 2 is the quotient when n is divided by 2

n mod 2 is the remainder when n is divided by 2

For example:

12 div 2 = 6, 12 mod 2 = 0

13 div 2 = 6, 13 mod 2 = 1

In order to see how to proceed further, we need to make another
observation:

The binary number obtained by removing the rightmost bit from the
binary representation of n is the binary representation of n div 2.

Therefore, in order to obtain the second bit from the right-hand end, we
must perform another division by 2, starting with the quotient from the
first division, and obtaining a new quotient and remainder. This process
is repeated, the remainders at each step forming the digits of the answer
from right to left, until a quotient of zero is obtained.

Here is the entire process written as an algorithm:

1. Input n {n must be a natural number}
2. Repeat

2.1. Output n mod 2
2.2. n n& div 2
until n = 0

The outputs must be read in reverse order to yield the correct answer.
Table 2.2 shows a trace of the algorithm with n = 6.

The answer, reading the output column from the bottom up, is 1102.
In practice, it is more convenient to set out decimal-to-binary

conversions in the manner shown in the next example.

18

Discrete mathematics for computing

Step n Output

1 6 –

2.1 6 0

2.2 3 –

2.1 3 1

2.2 1 –

2.1 1 1

2.2 0 –

Table 2.2

Example 2.3.1 Convert the decimal number 25 to its binary representation.

Solution The number to be converted (25) forms the first entry in a column, with
the new base (2) written to the left. At each step, the last entry in the
column is divided by 2, the quotient is written below the number being
divided, and the remainder is written in another column to the right.

2 25
12 1
6 0
3 0
1 1
0 1

(Leaving out the last step, 1 div 2 = 0 and 1 mod 2 = 1, is a common
mistake. The algorithm does not terminate until the quotient is zero.)

Reading the remainder column from the bottom up, we obtain the
answer: 2510 = 110012.

We now turn to the problem of converting a decimal fraction to binary.
For example, suppose we want to find the binary representation of
0.37510. Because 0.375 is less than 0.5, the first bit to the right of the point
in the binary representation (the halves bit, which has a place value of 1

2)
will be 0. Expressed another way, the halves bit is 0 because 2 × 0.375 is
less than 1. If, on the other hand, we had started with a number greater
than or equal to 1

2, say 0.875, the halves bit would be 1, and 2 0875 1$ '. .
We can sum up this observation in the following rule:

The halves bit in the binary representation of n is the integer part of
2n.

Some new notation will be needed in what follows:

()n denotes the integer part of n

frac(n) denotes the fractional part of n

For example,()27 2. ! and frac(2.7) = 0.7.
The observation we have made suggests that the following process

involving repeated multiplication by 2 can be used to convert a decimal
fraction to its binary representation.

1. Input n
2. Repeat

2.1. m n& 2
2.2. Output()m
2.3. n m& frac()
until n = 0

There is one problem with this process – what happens if the condition
n = 0 is never satisfied? This difficulty can certainly arise; we already

19

Bases and number representation

know that the decimal representation of a fraction need not terminate
(recall 1

3 = 0.33333...), and the same can happen with the binary
representation. We conclude that this sequence of steps is not an
algorithm, since it fails the requirement that an algorithm must terminate
after a finite number of steps.

One way to avoid the difficulty is to specify on input the number of
digits we want in the answer, and to output just that number of digits of
the binary representation. Here is the process with the necessary changes
made:

1. Input n, digits
2. i& 0
3. Repeat

3.1. i i& %1
3.2. m n& 2
3.3. Output()m
3.4. n m& frac()
until n = 0 or i = digits

In practice, the calculations are usually set out as shown in the next
example.

Example 2.3.2 Convert the decimal fraction 0.3210 to its binary representation, with 5
digits after the point.

Solution The number to be converted forms the first entry in a column, with the
new base (2) written to the right. At each step, the last entry in the column
is multiplied by 2, the fractional part is written below the number being
multiplied, and the integer part is written in another column to the left.
For convenience, the point in front of the fractional part is omitted.

32 2
0 64
1 28
0 56
1 12
0 24

The left column (read from the top down) gives the answer: 0.3210 =
0.01010...2. (Note that the answer is truncated to 5 digits after the point; it
is not rounded off.)

If a number has both an integer part and a fractional part, simply
convert each part separately and combine the results. For example, now
that we have shown that 2510 = 110012 and 0.3210 = 0.01010...2, it follows
without any further work that 25.3210 = 11001.01010...2.

20

Discrete mathematics for computing

2.4 The octal and hexadecimal systems

The techniques described in the previous section can be generalised to
bases other than 2. In particular, the bases 8 and 16 are often used in
computing, for a reason that will be explained shortly.

In the base 8 or octal system, numbers are written using the 8 octal
digits 0, 1, 2, 3, 4, 5, 6, 7. The place value of each digit is a power of 8.

For example:

374 2 3 8 7 8 4 8 2 8

252 25
8

2 1 0 1

10

.

.

! $ % $ % $ % $

!

#

In the base 16 or hexadecimal system (often simply called ‘hex’), 16
digits are needed. New symbols are required to denote the digits with
values 10, 11, 12, 13, 14 and 15, and there is an established convention
that the first six upper-case letters are used for this purpose. The 16
hexadecimal digits are therefore 0, 1, 2, ..., 9, A, B, C, D, E, F. The place
value of each digit is a power of 16.

For example:

E C9 8 14 16 9 16 12 16 8 16

37405
16

2 1 0 1

10

.

.

! $ % $ % $ % $

!

#

Converting a decimal number to its octal or hexadecimal
representation is similar to converting from decimal to binary; the only
difference is that 8 or 16 is used in place of 2 as the divisor or multiplier.

Example 2.4.1 Convert 275.437510 to octal.

Solution Convert the integer part:

8 275
34 3
4 2
0 4

27510 = 4238

Convert the fractional part:

4375 8
3 5000
4 0

0.437510 = 0.348

Combine the results to obtain the answer:

275.437510 = 423.348

21

Bases and number representation

Example 2.4.2 Convert 985.7812510 to hexadecimal.

Solution Convert the integer part:

16 985
61 9
3 13
0 3

98510 = 3D916

Convert the fractional part:

78125 16
12 50000
8 0

0.7812510 = 0.C816

Combine the results to obtain the answer:

985.7812510 = 3D9.C816

We have seen why the binary system is important in computing; it is
the system used internally by the computer itself. But why are the octal
and hexadecimal systems useful?

The main drawback of using the binary system as a general purpose
number system is that even moderately large integers have many digits in
their binary representation (typically more than three times as many as in
the decimal representation). The advantage of larger bases is that we can
write numbers using fewer digits. However, the decimal system is
inconvenient if we often have to convert between it and the binary
system, because, as we have seen, the conversion can involve a substantial
amount of calculation.

By using the octal and hexadecimal systems, we avoid the problem of large
numbers of digits, while gaining an important advantage over the decimal
system – there are simple algorithms for converting between binary and
octal, and between binary and hexadecimal. For this reason, bases 2 and 8 are
described as related bases. Similarly, bases 2 and 16 are related.

To convert a number from binary to octal, group the bits into sets of 3
on either side of the point. Each group of 3 bits corresponds to 1 digit in
the octal representation.

Example 2.4.3 Convert 10100011.101112 to octal.

Solution " " " " "10 100 011 101110
2 4 3 5 6

.

10100011.101112 = 243.568

22

Discrete mathematics for computing

Converting from octal to binary is equally easy – replace each octal
digit by its 3-bit binary representation. (If an octal digit is less than 4, its
3-bit binary representation will begin with one or more ‘leading’ zeros –
don’t leave them out!)

Example 2.4.4 Convert 514.78 to binary.

Solution # # # #

101001100 111
5 1 4 7

.

514.78 = 101001100.1112

Conversion between binary and hexadecimal is similar, except that
each hexadecimal digit corresponds to four bits.

Example 2.4.5 Convert 10111101001.1100012 to hexadecimal.

Solution 101 1110 1001 1100 0100
5 9 4

$%& $%& $%& $%& $%&

E C

.

10111101001.1100012 = 5E9.C416

Example 2.4.6 Convert B2.5D616 to binary.

Solution
1011 0010 0101 1101 0110

2 5 6B D
'() '() '() '() '()

.

B2.5D616 = 10110010.010111010112

The hexadecimal system is commonly used in computing to represent
the contents of part of the memory or a binary file in human-readable
form, since each byte (consisting of 8 bits) can be represented by 2
hexadecimal digits.

2.5 Arithmetic in non-decimal bases

The rules for adding, subtracting, multiplying and dividing numbers by
hand in bases other than 10 are the same as the rules you learnt in
primary school for the decimal system; it is only the tables that are
different. In this section, we look at how binary arithmetic with natural
numbers can be performed by hand. In Chapter 3, we will see how
computers perform arithmetic in the binary system.

The addition table in the binary system is shown in Table 2.3.

23

Bases and number representation

Numbers are added in the usual column-by-column fashion.
Sometimes there will be a 1 to ‘carry’ to the next column.

For example:

110112

11102

1010012

In this example, the second column from the right gives 1 + 1 = 10, so
there is a 1 to carry to the third column. Similarly, there is a carry from
the third to the fourth column, from the fourth to the fifth column, and
from the fifth to the sixth column.

This is essentially the method used by a computer to add natural
numbers.

Subtraction can also be done by the usual method, as shown in the
example below. (This is not the way most computers perform subtraction.
We will see in Chapter 3 how subtraction is done on a computer.)

110112

– 11102

11012

The multiplication table in the binary system is shown in Table 2.4.

A ‘long multiplication’ in binary is carried out without really doing any
multiplications at all. (All you ever need to multiply by is 0 or 1.) Here is
an example; notice that the row corresponding to multiplying by the fours
bit of the multiplier is omitted because that bit is zero:

24

Discrete mathematics for computing

+ 0 1

0 0 1

1 1 10

Table 2.3

× 0 1

0 0 0

1 0 1

Table 2.4

110102

× 10112

110102

110102

110102

1000111102

Long division is also straightforward, with the proviso that the
fractional part of the result may be non-terminating, in which case you
need to decide how many digits are required in the answer. At each step
of the division, the divisor ‘goes into’ the number either once (if it is less
than or equal to the number), or not at all (if it is greater than the
number). For example:

101 111012 2 1

1012

1002 0

02

10012 1

1012

1002

In this example, the integer quotient 1012 has been calculated, leaving a
remainder of 1002.

Some calculators have the facility for converting between the bases 10,
2, 8 and 16, and for performing arithmetic in those bases. Usually only
unsigned (positive) integers can be used in these calculations. Many
computer algebra software packages provide more flexible facilities for
working with numbers in different bases.

25

Bases and number representation

EXERCISES
1 Write the decimal number 394.2710 in expanded form.
2 Convert the following binary numbers to decimal by first writing

them in expanded form:
(a) 11001012 (b) 1010111.10112

3 Convert the following numbers from decimal to binary:
(a) 82610 (b) 0.3437510

(c) 1604.187510 (d) –471.2510

26

Discrete mathematics for computing

4 Convert the following numbers from decimal to binary, with 5
digits after the point:
(a) 0.210 (b) 13.4710

5 What is the effect on the value of a natural number if:
(a) 0 is appended to its binary representation?
(b) 1 is appended to its binary representation?

6 Convert the following octal and hexadecimal numbers to decimal:
(a) 47158 (b) 603.258

(c) C6E16 (d) 2FA.816

7 An efficient computational method for converting a natural
number from a non-decimal base to decimal, known as Horner’s
method, is illustrated in the following example:

62538 = ((6 × 8 + 2) × 8 + 5) × 8 + 3 = 324310

In words: multiply the first digit by the base, add the second digit,
multiply by the base, add the third digit, multiply by the base,
and so on. The final step is to add the last digit.
Use Horner’s method to convert the following numbers to
decimal:
(a) 72168 (b) 5435178

(c) 8CB216 (d) E490DF16

8 Write Horner’s method as an algorithm in pseudocode. Assume
that the base of the number to be converted is input first,
followed by the number itself, regarded as a list of digits in that
base.

9 Convert the following decimal numbers to octal:
(a) 384210 (b) 291.937510

10 Convert the following decimal numbers to hexadecimal:
(a) 2980310 (b) 6962.57812510

11 Convert the following binary numbers to octal and hexadecimal:
(a) 11101001102 (b) 11000101.001112

12 Convert the following octal and hexadecimal numbers to binary:
(a) 2478 (b) 31.638

(c) 93B16 (d) AD.1C16

13 The contents of one byte (consisting of 8 bits) in a memory
register of a computer can be represented by 2 hexadecimal
digits. A left shift is an operation in which the 8 bits are moved
one position to the left, the leftmost bit is lost, and a 0 is inserted
in the rightmost position. A right shift is defined in a similar
manner.

27

Bases and number representation

For each of the following bytes, find the result (in hexadecimal)
of a left shift and a right shift:
(a) 3A (b) E7

14 Perform the following calculations in binary arithmetic:
(a) 11011012 + 10111102

(b) 10011012 + 1010112

(c) 11100112 – 1011012

(d) 11000102 – 10101112

(e) 100112 × 11012

(f) 110102 × 101012

(g) 1101102* 10012

(h) 101102* 112 (3 digits after the point)
15 In the number system known as balanced ternary, each number

(positive, zero or negative) is represented by a string of digits
chosen from 1, 0, 1, where 1 denotes the number –1 regarded as a
digit. The place values of the digits correspond to powers of 3; for
example,1011 1 3 0 3 1 3 1 3 253 2 1 0! $ % $ %# $ % $!() .
(a) Write down the balanced ternary representations of the

integers from –5 to 5.
(b) For any positive number n, what is the relationship between

the ternary representations of n and –n? Justify your answer.

	Cover
	Title
	Copyright
	Contents
	List of symbols
	Preface
	1 Introduction to algorithms
	2 Bases and number representation
	3 Computer representation and arithmetic
	4 Logic
	5 Sets and relations
	6 Functions
	7 Induction and recursion
	8 Boolean algebra and digital circuits
	9 Combinatorics
	10 Introduction to graph theory
	11 Trees
	12 Number theory
	13 Algorithms and computational complexity
	Answers to exercises
	Index

