
Computer
representation and
arithmetic

3.1 Representing numbers in a computer

In Chapter 2, we looked at how numbers can be represented in the binary
number system. In this chapter, we shall use the techniques we developed
in Chapter 2 to investigate the ways in which numbers are represented
and manipulated in binary form in a computer.

Numbers are usually represented in a digital computer as sequences of
bits of a fixed length. Integers and real numbers are handled in different
ways, so we need to deal with the two cases separately. The details vary
from one type of computer to another, but our aim here is to gain an
overview of the way in which computers handle numbers, rather than to
study any particular type of machine in detail.

3.2 Representing integers

An integer (positive, negative or zero) is stored in a computer in a
sequence of bytes, where each byte consists of 8 bits. While various sizes,
corresponding to different numbers of bytes, may be available to the
programmer, the size of the integers manipulated directly by the
processor is determined by the design of the processor, with 4 bytes being
typical. In this section, however, we will generally work with 2-byte
integers for convenience; the principles are the same.

If integers are stored using 2 bytes, the registers in which an integer is
stored can be visualised in the following way, where each box represents
the storage location for one bit:

Since there are two possible values (0 or 1) for each bit, the number of
different integers that can be stored in 16 bits is:

28

C

H

A

P

T

E

R

3

2 2 2 2 16

2

65536

16

! ! ! !

"

"

! ()times

For example, it is possible to store any integer n in the range
$ $32768 32767n by assigning a unique 16-bit pattern to each integer in
that range. Other ranges of values containing 65536 integers could be
used instead, such as 0 65535$ $n , but a range that includes
approximately the same number of positive and negative integers is
generally the most useful.

The most commonly used way of representing an integer n using 16
bits is as follows:

1. The first bit is the sign bit; it is 0 if n is zero or positive, and 1 if n is
negative.

2. If n%0, the remaining 15 bits are the binary representation of n as
described in Chapter 2 (with leading zeros if necessary, to bring the
number of bits up to 15). If n < 0, the remaining bits are the binary
representation of the non-negative integer n + 32768.

Adding 32768 to n when n is negative might seem an unnecessary
complication, and you might wonder why the remaining bits could not
instead be set equal to the 15-bit binary representation of | n |.1 The
reason is that by adding 32768 we obtain a representation of n that allows
a simpler process to be used to carry out arithmetic with integers, as we
will see in the next section.

The addition of 32768 is actually easier to perform after the negative
integer n has been converted to binary, as the following example
illustrates. Suppose we want to find the 16-bit computer representation of
–6772. Converting –6772 to binary (using 15 bits, including leading
zeros), we obtain –677210 = –0011010011101002. Now, since the binary
representation of 32768 is 10000000000000002, we need to perform the
following calculation:

10000000000000002

– 0011010011101002

1100101100011002

There is a short-cut method of doing this subtraction:

1. All the zeros at the right-hand end of the number being subtracted
remain as zeros in the answer.

29

Computer representation and arithmetic

1 | n | denotes the absolute value of n, defined by:

| |n
n n
n n

"
%

&

'
(
)

if

if

0

0

For example, | 3 | = 3 and | –3 | = 3.

2. The rightmost 1 of the number remains as a 1 in the answer.
3. All the other bits change (0 changes to 1, 1 changes to 0).

The result of applying these steps is called the 2’s complement of the
original number with respect to the base 2. The ‘2’s’ is included in the
name to distinguish this type of complement from the 1's complement
(still with respect to base 2). The 1’s complement of a binary number is
one less than its 2’s complement, and is obtained simply by changing each
bit of the number (0 changes to 1, 1 changes to 0). We will not use 1’s
complements in what follows.

More generally, let n be an integer in the range1 2 1$ $ #n k , written in
its k-bit binary representation. The k-bit2 2’s complement of n is 2k – n
written in its k-bit binary representation. It is obtained by applying the
above steps to n.

The short-cut method cannot be used to find the computer
representation of –32768, because the binary representation of 32768 has
16 bits, not 15. In this case the result of the subtraction is a string of 15
zeros.

Example 3.2.1 Find the 16-bit computer representations of the following integers:

(a) 9843 (b) –15728 (c) –4961

Solution (a) The sign bit is 0, and 984310 = 0100110011100112 (using 15 bits). The
16-bit representation is:

00100110 01110011

(b) The sign bit is 1.
Convert 15728 to binary: 1572810 = 0111101011100002
Find the 2’s complement: 1000010100100002
The 16-bit representation is:

11000010 10010000

(c) The sign bit is 1.
Convert 4961 to binary: 496110 = 0010011011000012
Find the 2’s complement: 1101100100111112
The 16-bit representation is:

11101100 10011111

If the computer uses 4 bytes (32 bits) to store integers instead of 2, any
integer n in the range# $ $2147483648 2147483647n can be represented,
because 2147483648 = 231. The method for finding the representation is
essentially unchanged, except that 2147483648 takes the place of 32768,
and the binary conversion must be taken to 31 bits instead of 15.

30

Discrete mathematics for computing

2 The number of bits is usually not stated explicitly, but is implied by the number
of bits given in n.

3.3 Arithmetic with integers

In order for us to investigate how a computer adds and subtracts integers,
it is convenient to work with examples in which integers are represented
using a small number of bits – far smaller than any computer would use
in practice. The examples in this section all involve an imaginary
computer in which integers are stored as four bits. Only the integers from
–8 to 7 can be represented on this computer. Table 3.1 gives a complete
list of these integers, together with their representations according to the
rules given in the previous section.

(Note that to calculate the representation of –8 we cannot use the short-
cut rule for finding the 2’s complement.)

By examining Table 3.1, we can make the following observations:

For the non-negative integers (0 to 7), the last 3 bits of the computer
representation form the 3-bit binary representation of the integer.
Since the sign bit is 0 for these integers, the computer representation is
just the 4-bit binary representation of the integer.

31

Computer representation and arithmetic

Integer Representation

–8 1000

–7 1001

–6 1010

–5 1011

–4 1100

–3 1101

–2 1110

–1 1111

0 0000

1 0001

2 0010

3 0011

4 0100

5 0101

6 0110

7 0111

Table 3.1

▼

For a negative integer n (–8 to –1), the last 3 bits of the computer
representation form the 3-bit binary representation of n + 8. Since
the sign bit is 1, with a place value of 8 if the computer representation
is treated as a binary number, the computer representation is the 4-bit
representation of n + 16. (For example, the computer representation
of –3 is 1101, which is the binary representation of 13, and
13 = (–3) + 16.)

Suppose now that we want to add two integers on this computer. Notice
first that this will not always be possible; we cannot add 6 and 7, for
example, since the result is too large to be represented. Provided we
restrict ourselves to numbers that can be added, however, addition can be
done simply by adding the computer representations in the usual way
that binary numbers are added, except that if a 1 arises in the fifth column
from the right, then it is ignored.

Example 3.3.1 Verify that the following additions are done correctly on the 4-bit
computer:

(a) 2 + 3 (b) (–4) + 7
(c) (–3) + (–4) (d) (–6) + 5

Solution We write the computation in two columns, with the left column
containing the numbers to be added and their sum, and the right column
containing the corresponding computer representations.

(a)
2 0010
3 0011
5 0101

(b)
–4 1100
7 0111
3 1 0011

Ignoring the 1 in the leftmost column of the result gives 0011, which is the
computer representation of 3, the correct answer to (–4) + 7.

(c)
–3 1101
–4 1100
–7 1 1001

Ignoring the 1 gives 1001, the computer representation of –7.

32

Discrete mathematics for computing

▼

(d)
–6 1010
5 0101

–1 1111

It will be easier to see why this process works after we have studied
modular arithmetic in Chapter 12, but the general idea can be explained
as follows. The value of the representation of an integer on this computer
is always the integer itself or 16 more than the integer. Therefore, when
two representations are added, the value of the result either equals the
answer to the addition, or exceeds it by 16 or 32 (= 2 × 16). Ignoring a 1 in
the fifth column from the right is equivalent to subtracting 16. Therefore,
when the process is complete, if the result is not the correct answer to the
addition, it must differ from the correct answer by a multiple of 16. As
long as the sum of the two numbers falls in the allowed range from –8 to
7, the process must give the correct result, because the difference between
any two integers in the allowed range is less than 16.

If we try to use this method to add two integers that give a result
outside the allowed range, we will obtain the wrong answer. For example,
you can check that using the method to add 6 and 7 gives an answer of –3.
This overflow problem can be easily detected, however. If adding two
positive integers appears to give a negative result, or if adding two
negative integers appears to give zero or a positive result, then overflow
must have occurred. Some applications software that uses integer
arithmetic will generate an appropriate error message whenever this
happens. However, in many programming environments, arithmetic with
integers is performed exactly as we have described, and no error is
generated when overflow occurs. For this reason, you need to be aware of
the possibility of overflow when you are writing programs, and know how
to deal with it.

Subtraction of one integer from another using the computer
representation is quite straightforward, once we have made two
observations:

A number can be subtracted by adding its negative, that is, a – b =
a + (–b).
The representation of the negative of an integer is the 2’s complement
of the representation of the integer.

Subtraction of a number can therefore be carried out by adding the 2’s
complement of the number. This means that any subtraction problem is
easily converted into an addition problem. The advantage of doing
subtraction in this way is that a computer does not need ‘subtracters’ as
well as ‘adders’ in its circuitry (although it does need circuitry to calculate
2’s complements).

Overflow can occur when subtracting, just as it does when adding, so
you need to be alert to this possibility when you are programming.

33

Computer representation and arithmetic

▼
▼

Example 3.3.2 Evaluate 5 – 3 on the 4-bit computer.

Solution The representations of 5 and 3 are 0101 and 0011 respectively. The 2’s
complement of 0011 is 1101. Now carry out the addition:

0101
1101

1 0010

Ignore the leftmost 1 to obtain 0010, which is the representation of 2.

Subtraction using complements can be performed in any base. The
subtraction of numbers written in decimal notation using this method is
explored in Exercises 3 and 4 at the end of the chapter.

3.4 Representing real numbers

The representation of real numbers is more complicated than that of
integers, not just in a computer but in printed form as well. In Chapter 2,
we dealt with real numbers expressed in the decimal system with digits
before and after the decimal point. Not only is this not a convenient
representation for a computer, it is often not suitable as a written
representation either. One reason for this is that in many problems of
practical interest, it is necessary to deal with real numbers that are
extremely small or extremely large, and that occur as a result of
performing a physical measurement to a certain degree of accuracy. This
is a subtle point, but an important one.

An example will help to make this clear. The mass of the Earth is
sometimes quoted as 0.5976 × 1025 kg. Notice that this number is not
written as 5976 followed by 21 zeros. Not only would it be inconvenient to
write the number in that way, it would also not be correct to do so. The
figure of 0.5976 × 1025 kg would have been calculated from physical
measurements, and no measurement is ever free of error. In this case, the
accuracy of the figure is implied by the way it is written. We cannot say
that the mass of the Earth is exactly 0.5976 × 1025 kg, only that it lies
somewhere between 0.59755 × 1025 kg and 0.59765 × 1025 kg. When more
accurate measurements become available, it might turn out that a closer
value is, say, 0.59758 × 1025 kg.

The notation used in this example is called exponential notation (or
‘powers-of-ten’ notation). The use of exponential notation is especially
appropriate in scientific work, where the numbers arise from physical
measurements.

There is some terminology associated with exponential notation. In the
number 0.5976 × 1025, 0.5976 is the significand, 10 is the base (or radix),
and 25 is the exponent. If the significand m lies in the range 0 1 1. $ &m , as
it does in this example, the representation is said to be normalised. (If we

34

Discrete mathematics for computing

had written 0.005976 × 1027, for example, the number would still be in
exponential notation, but it would not be normalised.)

The precise way in which real numbers are represented in a computer
varies between types of machines, although in recent years there has been
a trend towards adopting the representation specified in the IEEE
Standard 754 (1985) for Binary Floating Point Arithmetic. (IEEE stands
for the Institute of Electrical and Electronics Engineers.) Our purpose
here is not to describe a particular representation, but rather to give a
general description of how real numbers are stored and manipulated.

The exponential notation described above is similar to the way in
which real numbers are represented in a computer, but there are some
differences. The main difference, not surprisingly in view of the way in
which computers manipulate data, is that a computer uses powers of 2
rather than 10. It is also usual for the exponent to be stored in a modified
form, as we will see shortly.

Before the computer representation of a real number can be found, the
number must first be converted to binary form and then be expressed in
normalised binary exponential form. For the representations we will use
in our examples, we say that a real number is expressed in normalised
binary exponential form if it is expressed in the form:

* !m e2

where the significand m is written in its binary representation and lies in
the range 01 12 2. $ &m , and the exponent e is an integer written in its
decimal representation. (The base 2 is also in decimal notation, of
course.) Note that other conventions for normalised binary exponential
form could be used; in particular, some computers use a representation
based on1 102 2$ &m . The reason for normalising is to ensure that the
representation of any number is unique.

Note that zero cannot be expressed in normalised binary exponential
form, because m = 0 would fall outside the allowed range of values of m.

Example 3.4.1 Express the following numbers in normalised binary exponential form:

(a) 11001.1012 (b) 0.0001101112

Solution (a) Move the point 5 places to the left to obtain the significand. The
exponent is 5.

11001.1012 = 0.110011012 × 25

(b) Move the point 3 places to the right to obtain the significand. The
exponent is –3.

0.0001101112 = 0.1101112 × 2–3

35

Computer representation and arithmetic

A real number is typically stored in a computer as 4 bytes (32 bits) or 8
bytes (64 bits)3. The first bit is the sign bit, and the remaining bits are
divided between the exponent and the significand. The number of bits
used for the exponent determines the range of numbers that can be
represented, while the number of bits used for the significand determines
the precision with which the numbers are represented. If the total number
of bits is fixed, there is a trade-off between range and precision. A
common format in modern computers is 8 bits for the exponent and 23
bits for the significand.

It is usually not the binary representation of the exponent itself that is
stored, but a number called the characteristic. The characteristic is a non-
negative integer obtained by adding to the exponent a number called the
exponent bias. The exponent bias is typically 2n – 1 – 1, where n is the
number of bits available to store the characteristic. The reason for storing
the exponent in this way is that it allows the computer to use simpler
algorithms to perform arithmetic with real numbers, in much the same
way that integer arithmetic is simplified by representing negative integers
in 2’s complement form.

In some representations, including the IEEE standard, the first bit of
the significand (which must always be a 1) is not stored, thus increasing
the precision by making one extra bit available. We will include the first
bit of the significand in all our examples.

Example 3.4.2 Find the 32-bit computer representations of

(a) 0.110011012 × 25 (b) 0.1101112 × 2–3

where 8 bits are used for the characteristic, and the exponent bias is
27 – 1.

Solution (a) The sign bit is 0. The characteristic is the 8-bit binary representation
of 5 + 27 – 1, which can be obtained by adding 100000002 (the binary
representation of 27) to the binary representation of 4, giving
10000100. The significand is extended to 23 bits by appending trailing
zeros, giving 11001101000000000000000. (Note that the zero before
the point is not stored.) The computer representation is:

01000010 01100110 10000000 00000000

(b) The sign bit is 0. The characteristic is –3 + 27 – 1, represented as an 8-
bit binary number. The simplest way to calculate the characteristic
here is to find the 7-bit 2’s complement of the binary representation
of 4 (= 3 + 1), and adjoin a leading zero:
Binary representation of 4: 00001002

2’s complement: 11111002

Characteristic: 01111100

36

Discrete mathematics for computing

3 If the two different formats are available on the same machine, they are
typically referred to as single precision and double precision respectively.

The computer representation is:

00111110 01101110 00000000 00000000

Putting together what we have established, the process for finding the
computer representation of a real number can be described as follows:

1. Convert the number to binary form, working to the precision
required by the number of bits used for the significand.

2. Express the binary number in normalised binary exponential form.
3. Calculate the characteristic.
4. Write down the computer representation.

Example 3.4.3 Find the 32-bit computer representation of –1873.42, where 8 bits are
used for the characteristic, and the exponent bias is 27 – 1.

Solution Using the methods of Chapter 2, convert –1873.42 to a binary number
with 23 bits:

–1873.4210 = –11101010001.0110101110002

Express the result in normalised binary exponential form:

–11101010001.0110101110002 = –0.11101010001011010111000 × 211

Sign bit: 1
Characteristic: 10001010
Computer representation:

11000101 01110101 00010110 10111000

Example 3.4.3 illustrates the important fact that the computer
representation of a real number may not be exact, because the conversion
to binary is truncated according to the precision available. Further
inaccuracy can occur as a result of round-off errors when arithmetic is
performed with real numbers. This is in contrast with the situation for
integers, which are stored and manipulated exactly in a computer.

One practical consequence of this fact is that it is often risky to test for
equality of real numbers (in an If-then statement, for example) in a
computer program. If x and y are real numbers, it is usually safer to test
for approximate equality by testing whether | x – y | is less than some
small positive number. For example, we might write:

If | x – y | < 10–6 then ...

to test whether x and y are approximately equal.
What is the range of real numbers that can be represented? Suppose a

computer stores real numbers as 32 bits, with 8 bits for the characteristic,
and an exponent bias of 27 – 1. The characteristic can take values from 0

37

Computer representation and arithmetic

to 28 – 1, so the exponent must lie within the range from 0 – (27 – 1) to
28 – 1 – (27 – 1), that is, from –127 to 128. The significand ranges from
0.12 to (just under) 12. Therefore the range of positive real numbers that
can be represented is from 0.12 × 2–127 to 12 × 2128, or about 0.29 × 10–38

to 0.34 × 1039 in decimal notation. Negative real numbers whose absolute
values fall in this range can also be represented. If the result of a
computation falls outside the allowed range, overflow or underflow4

occurs. The numbers that can be represented are indicated on the number
line shown in Figure 3.1; note that the line is not drawn to scale.

Example 3.4.4 Find the approximate range of positive real numbers that can be
represented if 10 bits are available for the characteristic, and the exponent
bias is 29 – 1.

Solution The characteristic can take values from 0 to 210 – 1, so the exponent must
lie within the range from 0 – (29 – 1) to (210 – 1) – (29 – 1), that is, from
–511 to 512. Therefore the range of positive real numbers that can be
represented is from 0.12 × 2–511 to 12 × 2512. Some calculators give an
error message if an attempt is made to evaluate 2–511 directly, but the
calculation can be done using base 10 logarithms:

log log

.
10

511
102 511 2

1538263278

"#

"#

Therefore:

2 10

10 10

0149 10

511 153 8263278

153 0 8263278

#

#

#

"

" !

" !

.

.

. 153

We can calculate 2512 in a similar fashion. The final result is that
numbers from 0.75 × 10–154 to 0.13 × 10155 can be represented on this
machine.

The number zero is not included among the real numbers whose
representations we have been discussing, because it cannot be expressed

38

Discrete mathematics for computing

Figure 3.1

4 Underflow occurs when the absolute value of the result of a computation
involving real numbers is less than the smallest positive number that can be
represented. Depending on the context in which the computation occurs, it
may or may not be appropriate to approximate the result of an underflow by
zero.

in normalised form. The representation of zero has to be treated as a
special case, using a string of bits that cannot be interpreted as any other
number.

As we noted earlier, the representation of real numbers varies to some
extent between machines. In the IEEE standard, the range of real numbers
that can be represented is a little smaller than we have described, because
the exponents at the extremes of the range have been set aside for special
purposes.5

3.5 Arithmetic with real numbers

We will not look at how a computer does arithmetic with real numbers
using their computer representations, because it is tedious to perform
these calculations by hand. However, we can gain a general idea of what
the process involves by looking at how arithmetic is done with decimal
numbers in normalised exponential form.

The rules for arithmetic in normalised exponential form are as follows.
To add or subtract:

1. Write the numbers in (non-normalised) exponential form with the
same exponent, using significands less than 1.

2. Add or subtract the significands to obtain the significand of the
answer. The common exponent is the exponent of the answer.

3. Normalise the answer if necessary.

To multiply or divide:

1. Multiply or divide the significands to obtain the significand of the
answer.

2. Add or subtract the exponents to obtain the exponent of the answer.
3. Normalise the answer if necessary.

In order to imitate the way in which a computer carries out the
computations, we will assume that the number of decimal digits available
for the significand in the normalised form is fixed, and that the answer is
rounded off to that number of digits. (In some machines, greater accuracy
is achieved by appending additional “guard” digits to the significand
while an arithmetic operation is being carried out. In particular, this is
always the case in machines that comply with the IEEE standard.)

Example 3.5.1 Perform the following computations with the aid of a calculator,
assuming a precision of four decimal places in the significand:

(a) 0.4932 × 103 + 0.2881 × 104 – 0.3096 × 104

39

Computer representation and arithmetic

5 IEEE arithmetic has representations for positive and negative infinity, and
undefined quantities (called “not-a-number”). It also allows numbers smaller
than the smallest positive normalised number to be represented in non-
normalised form, thus allowing “gradual underflow”.

(b) (0.2174 × 10–5) × (0.1482 × 107)+ (0.9497 × 104)

Solution
(a) 04932 10 0 2881 10 03096 10

00493 10 0 2881

3 4 4

4

. . .

. .

! , ! # !

" ! , ! # !

" !

" !

10 03096 10

00278 10

0 2780 10

4 4

4

3

.

.

.

(b) (.) (.) (.)

.

0 2174 10 01482 10 09497 10

003393 10

5 7 4! ! ! + !

" !

#

#

#" !

2

303393 10.

Example 3.5.1 illustrates how round-off errors can arise when real
number calculations are performed.

3.6 Binary coded decimal representation

Modern digital computers work in the binary number system. However,
some early computers performed calculations in the decimal system,
using a binary code for each decimal digit. This system, known as binary
coded decimal, or BCD, is also commonly used in electronic calculators.

The BCD code of each decimal digit from 0 to 9 is its 4-bit binary
representation, as shown in Table 3.2.

40

Discrete mathematics for computing

Digit BCD code

0 0000

1 0001

2 0010

3 0011

4 0100

5 0101

6 0110

7 0111

8 1000

9 1001

Table 3.2

The BCD representation of a non-negative integer is obtained by
replacing each decimal digit by its BCD code.

For example, the BCD representation of 8365 is:

1000 0011 0110 0101

BCD arithmetic is essentially decimal arithmetic done according to the
familiar rules, but with BCD codes in place of the digits. We shall
illustrate this by investigating the addition of two numbers in the BCD
system.

When we add two numbers in the decimal system, we add pairs of
digits a column at a time, and sometimes there is a ‘carry’ to the next
column to the left. Essentially the same process is used in the BCD
system.

How are BCD digit codes added? By examining Table 3.2, we see
that any two BCD codes can be added using the rules of binary addition
to give the BCD code of the result, provided that the result is less than
10 (for example, adding the codes for 3 and 4 gives the code for 7:
00112 + 01002 = 01112). If the result is 10 or more (10102 or more in
binary), there is a (decimal) digit to ‘put down’ and a 1 to ‘carry’. We
could find the digit to ‘put down’ by subtracting ten from the result, but it
is simpler to use the following rule: add six (01102) and disregard the
leftmost 1. Applying the rule is equivalent to subtracting ten, because
disregarding the leftmost 1 is equivalent to subtracting sixteen (100002).

For example, adding 01012 and 01112 (5 and 7) as binary numbers gives
11002. Now add 01102 to obtain 100102. Interpret this binary number as
0001 0010; that is, put down 0010 (the BCD representation of 2) and carry
0001. On replacing each BCD code with its corresponding decimal digit,
we obtain 12, the correct answer to the addition.

Example 3.6.1 Calculate 274 + 163 in BCD.

Solution The decimal and BCD calculations are shown side by side to show the
relationship between them.

274 0010 0111 0100
163 0001 0110 0011

0011 1101 0111
0110

1 0011
437 0100 0011 0111

BCD calculations take longer to perform than the corresponding
calculations in the binary system. The advantage of the BCD
representation is that it avoids the need to convert the input from decimal
to binary and the output from binary to decimal.

41

Computer representation and arithmetic

42

Discrete mathematics for computing

EXERCISES
1 Find the 2’s complements of the following 8-bit binary numbers:

(a) 110101002 (b) 011010012

2 Write an algorithm in pseudocode for finding the 2’s
complement of a positive binary integer. (Assume that the
integer is input as a sequence of bits: b1b2b3...bn.)

3 The 10’s complement of a positive decimal integer n is 10k – n,
where k is the number of digits in the decimal representation of
n. It can be calculated in the following way:
1. All the zeros at the right-hand end of the number remain as

zeros in the answer.
2. The rightmost non-zero digit d of the number is replaced by

10 – d in the answer.
3. Each other digit d is replaced by 9 – d.
Find the 10’s complements of the following decimal numbers
using the rules given above, and check your answers by
evaluating 10k – n on a calculator:
(a) 3296 (b) 10350

4 Subtraction a – b (with a > b) can be performed in the decimal
system by adding the 10’s complement of b to a and ignoring the
leftmost 1 of the answer.
(a) Evaluate 39842 – 17674 using this method.
(b) Explain why the method works.

5 Find the 16-bit computer representations of the following
integers:
(a) 29803 (b) –8155

6 The maximum unsigned integer on a CRAY-1 computer is
approximately 2.8 × 1014. How many bits are used to store
unsigned integers on a CRAY-1? (Unsigned integers are non-
negative integers stored without a sign bit.)

7 Verify that 3 + (–5) is evaluated correctly on the 4-bit computer.
8 Evaluate 7 – 6 on the 4-bit computer.
9 Express 1101110100.10012 in normalised binary exponential

form. Hence find its 32-bit computer representation, assuming 8
bits are used for the characteristic, and the exponent bias is
27 – 1.

10 Find the 32-bit computer representations of the following
numbers, assuming 8 bits are used for the characteristic, and the
exponent bias is 27 – 1:
(a) 5894.376 (b) –0.0387

43

Computer representation and arithmetic

11 Repeat Exercise 9 for a 32-bit computer in which 12 bits are used
for the characteristic, and the exponent bias is 211 – 1.

12 Find, in decimal form, the approximate range of positive real
numbers that can be represented in 64 bits, where 11 bits are
used for the characteristic, and the exponent bias is 210 – 1.

13 The algorithm below represents an attempt to print out a table of
cubes of numbers from 0.1 to 10 in steps of 0.1. Explain the
problem that might arise if the algorithm is implemented on a
computer:
1. x- 00.
2. Repeat

2.1. x x- ,01.
2.2. x cubed x_ - 3

2.3. Output x, x_cubed
until x = 10.0

Rewrite the algorithm so that the problem is avoided.
14 Perform the following decimal computations, assuming a

precision of 4 decimal places in the significand:
(a) 0.8463 × 106 + 0.7012 × 108

(b) (0.3315 × 10–5) × (0.2089 × 109)
(c) (0.5160 × 103)+ (0.1329 × 104) – (0.3816 × 100)

15 The following statement is sometimes made about real number
arithmetic: ‘Precision is lost when two almost equal numbers are
subtracted.’ Explain this statement with reference to calculations
with real numbers in exponential form.

16 Perform the following calculations in BCD arithmetic:
(a) 3711 + 5342 (b) 2859 + 3264

	Cover
	Title
	Copyright
	Contents
	List of symbols
	Preface
	1 Introduction to algorithms
	2 Bases and number representation
	3 Computer representation and arithmetic
	4 Logic
	5 Sets and relations
	6 Functions
	7 Induction and recursion
	8 Boolean algebra and digital circuits
	9 Combinatorics
	10 Introduction to graph theory
	11 Trees
	12 Number theory
	13 Algorithms and computational complexity
	Answers to exercises
	Index

