
Logic

4.1 Logic and computing

In this chapter, we introduce the study of logic from a mathematical point
of view. Mathematical logic finds applications in many areas of
computing. The laws of logic are employed in the design of the digital
circuitry in a computer. Logical expressions occur as conditions in the
control structures in algorithms and computer programs, and in the
commands used for querying databases. Expert systems employing
knowledge-based software use rules of logical inference to draw
conclusions from known facts. Formal specification documents, which
state in a precise way what computer systems are required to do, are
written in specification languages, such as Z, which use the theory and
notation of symbolic logic.

We begin this chapter by looking at examples involving everyday
English sentences. This is followed by an introduction to the more formal
mathematical approach used in propositional and predicate logic.

4.2 Propositions

The fundamental objects we work with in arithmetic are numbers. In a
similar way, the fundamental objects in logic are propositions.

Definition A proposition is a statement that is either true or false. Whichever of these
(true or false) is the case is called the truth value of the proposition.

Here are some examples of English sentences that are propositions:

‘Canberra is the capital of Australia.’
‘There are 8 days in a week.’
‘Isaac Newton was born in 1642.’
‘5 is greater than 7.’
‘Every even number greater than 2 can be expressed as the sum of
two prime numbers.’
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The first and third of these propositions are true, and the second and
fourth are false. It is not known at present whether the fifth proposition is
true or false.1

The following sentences are not propositions:

‘Where are you going?’
‘Come here.’
‘This sentence is false.’

The first sentence is a question and the second is a command, so clearly
neither is a proposition.

The third sentence is rather more subtle. It is a self-referential
statement (that is, it makes a statement about itself). Although at first
sight it appears to be a proposition, we run into difficulty when we try to
determine whether it is true or false. If we assume it is true, we find the
sentence telling us that it is false, which contradicts our assumption. But
assuming the sentence is false doesn’t work either, because if what the
sentence is telling us is false, then the sentence is true! The sentence is an
example of a paradox, and the only way to avoid the difficulty is simply
not to admit the sentence as a proposition. In fact, we will not allow self-
referential statements at all in our work in logic. (This does not mean that
there is no place for self-reference in logic; in fact, some of the most
important results in modern logic involve self-referential propositions.)

Now, what about sentences like these?

‘Anne is tall.’
‘Ice cream is delicious.’
‘x > 5.’

In some textbooks, sentences like the first two are not regarded as
propositions, because it could be argued that their truth values are not
well defined. The first sentence refers to someone called Anne (Anne
who?), and states that she is tall (just how tall is ‘tall’?). The second
sentence is clearly a matter of personal opinion. Quite frankly, it is not
worthwhile arguing about whether these sentences are propositions or
not. We will feel free to use sentences like these in our examples. In
practice, the kinds of propositions that arise when logic is applied to
mathematics and computing are always precisely defined anyway, so no
difficulties should arise.

The last of the three sentences given above is an example of a predicate.
A predicate is a statement containing one or more variables; it cannot be
assigned a truth value until the values of the variables are specified. We
will investigate predicate logic in Section 4.7.

Statements containing variables commonly occur in algorithms and
computer programs. For example, an algorithm might contain the
statement ‘x > 5’ as the condition in a control structure such as an If-
then. In this case, however, the truth value of the statement is determined
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mathematician Christian Goldbach (1690–1764).



when the line is executed while the program is being run with a particular
set of inputs, so statements of this type can be treated as propositions.

4.3 Connectives and truth tables

Logic is not concerned with determining the truth values of propositions
of the kind we have seen so far. (The truth value of ‘Canberra is the
capital of Australia’ is a question of geography, not logic.) The next
example is different, however:

‘If Brian and Angela are not both happy, then either Brian is not
happy or Angela is not happy.’

We do not need to know whether Brian is happy, or whether Angela is
happy, in order to determine whether the proposition is true; with a
moment’s thought, we can see it must be true because of its logical
structure. In fact, any sentence with the same logical structure must be
true; for example:

‘If 2 and 2 are not both rational numbers, then either 2 is not a
rational number or 2 is not a rational number.’

It is the structure of propositions such as these that we study in
propositional logic.

The sentence about Brian and Angela is an example of a compound
proposition. It is built up from the atomic propositions ‘Brian is happy’
and ‘Angela is happy’ using the words and, or, not and if-then. These
words are known as connectives. As we will see, the role of connectives in
logic is analogous to the role played by operations such as + and × in
algebra.

The study of the structure of compound propositions is made easier by
the use of symbols for atomic propositions and connectives. We will use
lower-case letters such as p, q and r to denote atomic propositions. There
are five connectives that we will use in our work; they are listed in Table
4.1, together with their symbols.

The connectives if-then and if-and-only-if are also known as implies and
is-equivalent-to respectively.
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Connective Symbol

and !

or "

not #

if-then $

if-and-only-if %

Table 4.1



With the exception of not, the symbols for these connectives are
written between the two operands (the propositions they connect). For
example, if p denotes the proposition ‘Today is Monday’, and q denotes
the proposition ‘It is raining’, then we can write p q! to denote the
proposition ‘Today is Monday and it is raining’. The symbol# (not) is
placed before the proposition to which it applies; thus,#p means ‘Today
is not Monday’.

The connective and can be formally defined by stating the truth value
of the proposition p q! for each possible combination of the truth values
of the propositions p and q. The other connectives can be defined in a
similar manner. This information is usually presented in the form of a
truth table. The truth table for and is shown in Table 4.2.

The truth values ‘true’ and ‘false’ are denoted in the table by T and F
respectively. The first two columns of the table contain all four possible
combinations of the truth values of the two propositions p and q. The
truth table reflects our everyday understanding of what and means – if p
and q are both true then p q! is true, otherwise p q! is false.

The word or is used in English in two different ways. If you are offered
tea or coffee, you are expected to choose one or the other, but not both!
On the other hand, if a discount is available to anyone who is a student or
a pensioner, it is presumably available to someone who is both a student
and a pensioner. In the first example, or is used exclusively, while in the
second example it is used inclusively. By convention, or in logic (and in
computing and mathematics generally) means ‘inclusive-or’ unless the
contrary is stated explicitly. The symbol"always means ‘inclusive-or’;
thus p q" means ‘p or q or both’. If we wanted to use ‘exclusive-or’ (or
xor, as it is sometimes called) in our work, we would have to define it as
another connective, but we will not do this here.

The truth table for or is shown in Table 4.3.
The truth table for not is straightforward; it is shown in Table 4.4.
It takes a little more thought to construct the truth table for if-then.

Suppose your lecturer makes the following claim:

‘If you pass this subject, then you will progress to the next year of
your course.’
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p q p q!

T T T

T F F

F T F

F F F

Table 4.2



Consider the different possibilities that could arise. If you pass the subject
and progress to the next year of your course, then clearly your lecturer’s
statement is true. If you pass the subject but don’t progress to the next
year of your course, then you could accuse your lecturer of making a false
statement.

What happens if you fail the subject? Whether or not you progress to
the next year of your course, you could not accuse your lecturer of
making a false statement. (The statement said only what would happen if
you passed, not what would happen if you failed.) We treat the lecturer’s
statement as true in these cases.

The truth table for if-then is shown in Table 4.5.

While the argument given above is intended to make the truth table for
if-then appear reasonable, the truth table itself is really the definition of
the connective if-then in logic. It follows that we can assign truth values
to some rather strange English sentences. For example, the sentence ‘If
snow is white then lions roar’ is a true proposition (according to the first
line of the truth table), even though the whiteness of snow does not cause
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p q p q"

T T T

T F T

F T T

F F F

Table 4.3

p #p

T F

F T

Table 4.4

p q p q$

T T T

T F F

F T T

F F T

Table 4.5



lions to roar. Another example is provided by the sentence: ‘If Paris is in
Germany then grass is purple’; according to the last line of the table, the
sentence is true.

It is important to understand the difference between the connective if-
then and the control structure If-then which we encountered in our study
of algorithms. When If-then is used as a control structure, the sentence
following then is an instruction, not a proposition.

Finally, the connective if-and-only-if is true precisely when the two
propositions have the same truth value (both true or both false). Its truth
table is shown in Table 4.6.

For example, the proposition ‘Birds have three legs if and only if
2 + 2 = 5’ is true, because the two propositions from which it is built up
are both false.

4.4 Compound propositions

We now have the notation we need in order to be able to write compound
propositions in symbolic form. Example 4.4.1 shows how this is done.

Example 4.4.1 Express the proposition ‘Either my program runs and it contains no bugs,
or my program contains bugs’ in symbolic form.

Solution Let p denote the statement: ‘My program runs.’
Let q denote the statement: ‘My program contains bugs.’

Then the proposition can be written in symbolic form as follows:

( )p q q!# "

Notice in this example how parentheses are used to group sub-
expressions within the whole expression, just as in arithmetic and
algebra. If the sub-expressions had been grouped differently, the meaning
would have been different: p q q!# "( ) means ‘My program runs, and
either it does not contain bugs or it contains bugs.’ Parentheses should
always be used to group sub-expressions in compound propositions, in
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p q p q%

T T T

T F F

F T F

F F T

Table 4.6



order to avoid any ambiguity in the meaning. (There is one exception –
by convention, the symbol# immediately preceding a proposition applies
only to that proposition. Thus# !p q always means ( )# !p q and never
# !( )p q .)

In Example 4.4.1, ( )p q q!# " is the symbolic notation for a
proposition; we could find its truth value if we knew the truth values of
‘My program runs’ and ‘My program contains bugs’. In the study of logic,
it is often useful to analyse expressions such as ( )p q q!# " in which p and
q are treated as variables rather than as symbols denoting specific
propositions. If we do this, then ( )p q q!# " is no longer a proposition
but a logical expression; it becomes a proposition only if p and q are
replaced by propositions. We can think of a logical expression in the same
way as we think of an expression containing a variable x in algebra – the
expression can’t be evaluated unless x is assigned a value, but this does
not prevent us from studying the expression and investigating its
properties.

We can analyse the structure of the logical expression ( )p q q!# " in
the following way. The entire expression takes the form A B" , where A is
the expression p q!# and B is the variable q. The connective or is the
principal connective in the original expression. In turn, p q!# takes the
form C D! , where C is the variable p, D is the expression#q, and the
principal connective is and. Finally, the principal connective in#q is not.
This way of breaking down the structure of an expression is useful in
constructing its truth table, as we will see shortly.

Looking ahead to Chapter 11, the structure of the expression
( )p q q!# " can be depicted using an expression tree, as shown in Figure
4.1.

The truth value of the expression ( )p q q!# " for each possible
combination of truth values of p and q can be found by constructing a
truth table.

Example 4.4.2 Construct the truth table for the expression ( )p q q!# " .

Solution The solution is shown in Table 4.7. The first two columns of the table
contain all the possible combinations of the truth values of p and q.
Column 3 is obtained from Column 2 using the truth table for not.
Column 4 is obtained from Columns 1 and 3 using the truth table for and.
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Finally, Column 5, which contains the truth values for the entire
expression, is obtained from Columns 4 and 2 using the truth table for or.

Notice that each column is obtained using the truth table for the principal
connective in the expression at the top of the column.

If an expression contains three variables (p, q and r, say), then the table
will have eight lines instead of four (there are 23 = 8 different ways of
allocating truth values to three expressions), but the method is the same.

Now look again at the proposition we introduced at the beginning of
Section 4.3:

‘If Brian and Angela are not both happy, then either Brian is not
happy or Angela is not happy.’

If p and q denote respectively ‘Brian is happy’ and ‘Angela is happy’, the
proposition can be expressed symbolically in the following way:

# ! $ # "#( ) ( )p q p q

The truth table for this expression is given in Table 4.8.

The final column of the truth table contains only T. This tells us that the
expression is always true, regardless of the truth values of p and q.

An expression that is always true, regardless of the truth values of the
variables it contains, is called a tautology.

Now consider the following proposition:
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p q #q p q!# ( )p q q!# "

T T F F T

T F T T T

F T F F T

F F T F F

Table 4.7

p q p q! # !( )p q #p #q # "#p q # ! $ # "#( ) ( )p q p q

T T T F F F F T

T F F T F T T T

F T F T T F T T

F F F T T T T T

Table 4.8



‘It is raining and windy, and it is not raining.’

Even without looking at the weather, we can tell that the proposition is
false from its logical structure. We can confirm this by writing the
proposition in symbolic form and constructing the truth table for the
resulting expression. Using p and q to denote respectively ‘It is raining’
and ‘It is windy’, we obtain Table 4.9.

An expression that is always false, regardless of the truth values of the
variables it contains, is called a contradiction.

4.5 Logical equivalence

Here is a rather complicated proposition:

‘It is not the case that both the input file and the output file are not
on the disk.’

The proposition below expresses the same idea more simply:

‘Either the input file or the output file is on the disk.’

If we were to express these propositions symbolically, we would expect
the resulting logical expressions to have the same truth table. Let p and q
denote respectively the propositions ‘The input file is on the disk’ and
‘The output file is on the disk’. Then we have the following result, in
which for convenience we have combined the truth tables for the two
expressions into a single table (Table 4.10).
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p q p q! #p ( )p q p! !#

T T T F F

T F F F F

F T F T F

F F F T F

Table 4.9

p q #p #q # !#p q ## !#( )p q p q"

T T F F F T T

T F F T F T T

F T T F F T T

F F T T T F F

Table 4.10



The sixth and seventh columns are the truth tables for the first and
second expressions respectively, and we can see that their truth values are
the same.

Definition Two expressions (composed of the same variables) are logically
equivalent if they have the same truth values for every combination of the
truth values of the variables.

Informally, we could say that two expressions are logically equivalent if
they yield the same truth table.

There is a subtle but important distinction between the connective if-
and-only-if and the concept of logical equivalence. When we write p q% ,
we are writing a single logical expression. Logical equivalence, on the
other hand, is a relationship between two logical expressions. The two
concepts are related in the following way: two expressions A and B are
logically equivalent if and only if the expression A B% is a tautology.

Some important questions about logical equivalence arise when we
consider expressions of the form p q$ . Such expressions are called
implications. We investigate these questions now.

Definitions The converse of p q$ is q p$ .

The contrapositive of p q$ is# $#q p.

Example 4.5.1 Write down English sentences for the converse and the contrapositive of:

‘If 250 is divisible by 4 then 250 is an even number.’

Solution The sentence takes the form p q$ , where p denotes ‘250 is divisible by 4’
and q denotes ‘250 is an even number’.

The converse is q p$ , which we can write in English as follows:

‘If 250 is an even number then 250 is divisible by 4.’

The contrapositive is# $#q p, which we write as follows:

‘If 250 is not an even number then 250 is not divisible by 4.’

Not only is the original proposition in this example a true mathematical
statement as it stands; it remains true if 250 is replaced by any other
integer. This is also the case for the contrapositive. The converse,
however, is false – 250 is an even number, but it is not divisible by 4.
Example 4.5.1 suggests that p q$ is not logically equivalent to its
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converse, but that it is logically equivalent to its contrapositive. We can
confirm that this is the case by constructing a truth table (Table 4.11).

The columns for p q$ and# $#q p are identical to each other, but they
differ from the column for q p$ . Therefore an implication and its
contrapositive are logically equivalent, while an implication and its
converse are not.

4.6 Laws of logic

We began Section 4.5 with an example of a complicated proposition that
we showed to be logically equivalent to a simpler one. Occasions often
arise in practice where it is desirable to replace a logical expression with a
simpler expression that is logically equivalent to it. For example, we have
seen how logical expressions representing propositions can occur in
algorithms and computer programs. By writing these expressions as
simply as possible, we can make a program more efficient and reduce the
chance of error.

In order to be able to simplify logical expressions effectively, we need
to establish a list of pairs of expressions that are logically equivalent. We
will use the symbol&placed between two expressions to indicate that they
are equivalent. A statement of the form P Q& where P and Q are logical
expressions is called a law of logic. A list of the most important laws of
logic is given in Table 4.12.

The first two laws in Table 4.12 allow the connectives if-then and if-
and-only-if to be removed from any expression containing them. The
remaining laws involve just the connectives and, or and not. Except for
the double negation law, these laws occur in pairs, in which the second
law in the pair can be obtained from the first by interchanging!with"
and T with F. (Here, T means any true proposition, and F means any false
proposition.) The second law in each pair is said to be the dual of the
first, and vice versa. The double negation law is its own dual.

The list of laws in Table 4.12 is very comprehensive, and it might
appear rather daunting at first. However, many of the laws are obvious
after a moment’s thought, such as the double negation law (‘It is not the
case that it is not raining’ is a convoluted way of saying ‘It is raining’),
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p q p q$ q p$ #q #p # $#q p

T T T T F F T

T F F T T F F

F T T F F T T

F F T T T T T

Table 4.11



and the idempotent laws (‘I am happy and I am happy’ just means ‘I am
happy’). The less obvious laws can be checked using truth tables.

Notice that some of the laws take the same form as laws of ordinary
algebra, with = replaced by&, × by!, + by", 1 by T and 0 by F. The
commutative, associative and identity laws are of this type, and so is the
first of the distributive laws, because it corresponds to the familiar rule
for ‘multiplying out brackets’: x × (y + z) = (x × y) + (x × z). This is
not the case with the second distributive law, because x + (y × z) =
(x + y) × (x + z) is not a law of algebra. Working with the laws of logic
can sometimes have the same ‘feel’ as doing algebra with numbers, but it
is essential to make sure that each step in the solution to a problem can be
justified using one of the laws of logic.

Example 4.6.1 Use a truth table to verify the first de Morgan’s law:# ! &# "#( )p q p q.

Solution Note that the law can be paraphrased as follows: ‘If it is not the case that p
and q are both true, then that is the same as saying that at least one of p or
q is false.’

The truth table is shown in Table 4.13. The columns for# !( )p q and
# "#p q are identical, and therefore the two expressions are logically
equivalent.
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Law(s) Name

p q p q q p% & $ ! $( ) ( ) Equivalence law

p q p q$ &# " Implication law

## &p p Double negation law

p p p! & p p p" & Idempotent laws

p q q p! & ! p q q p" & " Commutative laws

( ) ( )p q r p q r! ! & ! ! ( ) ( )p q r p q r" " & " " Associative laws

p q r
p q p r
! " &

! " !

( )

( ) ( )

p q r
p q p r
" ! &

" ! "

( )

( ) ( )
Distributive laws

# ! &# "#( )p q p q # " &# !#( )p q p q de Morgan’s laws

p p! &T p p" &F Identity laws

p! &F F p" &T T Annihilation laws

p p!# &F p p"# &T Inverse laws

p p q p! " &( ) p p q p" ! &( ) Absorption laws

Table 4.12



The next example illustrates how the laws of logic can be applied to the
problem of simplifying a logical expression. Starting with the given
expression, a sequence of equivalent expressions is obtained by applying
one of the laws at each step. You need to keep in mind that ‘applying a
law’ often means replacing the variables in the law with logical
expressions in order to put it into the required form.

Example 4.6.2 Use the laws of logic to simplify the expression:

p p q"## $( )

Solution As this is our first example of simplifying an expression using the laws of
logic, the solution is given in more detail than would normally be shown
in practice, to demonstrate at each step exactly how the relevant law of
logic from Table 4.12 has been applied.

p p q"## $( )& "### "p p q( ) implication law (with#p in
place of p)

& "# "p p q( ) double negation law
& "# !#p p q( ) second de Morgan’s law
& "# ! "#( ) ( )p p p q second distributive law (with

#p and#q in place of q and r
respectively)

& ! "#T ( )p q second inverse law
& "# !( )p q T first commutative law (with T

and ( )p q"# in place of p and
q respectively)

& "#p q first identity law (with ( )p q"#
in place of p)

There are no hard and fast rules for determining which law to apply at
each step in this type of problem. If the connectives% or$ appear in the
given expression, they should be eliminated using the first two laws. After
that, it can sometimes be a matter of trying a law to see if it helps to
simplify the expression, and then trying another if it doesn’t.
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p q p q! # !( )p q #p #q # "#p q

T T T F F F F

T F F T F T T

F T F T T F T

F F F T T T T

Table 4.13



An important practical application of the laws of logic is the
simplification of logical expressions in algorithms. De Morgan’s laws are
often particularly useful in this type of problem.

Example 4.6.3 An algorithm contains the following line:

If not(x > 5 and x'10) then ...

How could this be written more simply?

Solution Apply the first de Morgan’s law:# ( ! '[( ) ( )]x x5 10 is equivalent to
# ( "# '( ) ( )x x5 10 , which in turn is equivalent to ( ) ( )x x' " (5 10 . The
line of the algorithm can therefore be written:

If x'5 or x > 10 then ...

The next example shows how a type of problem that we previously
dealt with using truth tables can also be solved using the laws of logic.

Example 4.6.4 Use the laws of logic to show that[( ) ]p q q p$ !# $# is a tautology.

Solution [( ) ]p q q p$ !# $# &# # " !# "#[( ) ]p q q p implication law
(twice)

&## !# " "#[ ( )]q p q p first commutative
law

&# # !# "# ![( ) ( )]q p q q first distributive law
"#p

&# # !# " !#[( ) ( )]q p q q first commutative
"#p law

&# # !# " "#[( ) ]q p pF first inverse law
&## !# "#( )q p p second identity law
& ## "## "#( )q p p first de Morgan’s law
& " "#( )q p p double negation law

(twice)
& " "#q p p( ) second associative

law
& "q T second inverse law
&T second annihilation

law

Therefore[( ) ]p q q p$ !# $# is a tautology.

Both methods have advantages and disadvantages. The truth table
method can be lengthy, but it is a mechanical procedure guaranteed to
lead to the answer eventually. Applying the laws of logic can be more
difficult, because it is not always easy to decide which law should be
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applied in a given situation. On the other hand, the laws of logic will often
lead to a solution more quickly.

The next example shows how the laws of logic can be used to determine
the validity of an argument.

Example 4.6.5 Determine whether the following argument is valid:

‘The file is either a binary file or a text file. If it is a binary file then
my program won’t accept it. My program will accept the file.
Therefore the file is a text file.’

Solution An argument of this type consists of some premises (in this example, the
first three sentences), which together are supposed to imply the
conclusion (the last sentence). The argument takes the form of the logical
expression:

( )P P P Q1 2 3! ! $

where P1, P2 and P3 are the premises, and Q is the conclusion. (There is no
ambiguity in writing P P P1 2 3! ! without brackets, because the connective
!obeys the associative law.) If the argument is valid, the expression
should be a tautology.

Let p denote the proposition ‘The file is a binary file’, let q denote ‘The
file is a text file’, and let r denote ‘My program will accept the file’. Then:

P p q
P p r
P r
Q q

1

2

3

& "

& $#

&

&

The argument now takes the form:

[( ) ( ) ]p q p r r q" ! $# ! $

We can find out whether this expression is a tautology either by
constructing a truth table or by trying to simplify it using the laws of
logic. Since a truth table would require eight rows and a large number of
columns, and would be fairly tedious to construct, we try the latter
approach.
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[( ) ( ) ] [( ) ( ) ]

[( ) ( )]

{( ) [( ) ( )]}

{( ) [( ) F]}

[( ) ]

[ ( ) ]

{[( ) ( )] }

p q p r r q p q p r r q
p q r p r q
p q r p r r q
p q r p q
p q r p q
p p q r q

p p p q r q

⁄ Ÿ Æ ÿ Ÿ Æ ∫ ÿ ⁄ Ÿ ÿ ⁄ ÿ Ÿ ⁄
∫ ÿ ⁄ Ÿ Ÿ ÿ ⁄ ÿ ⁄
∫ ÿ ⁄ Ÿ Ÿ ÿ ⁄ Ÿ ÿ ⁄
∫ ÿ ⁄ Ÿ Ÿ ÿ ⁄ ⁄
∫ ÿ ⁄ Ÿ Ÿ ÿ ⁄
∫ ÿ ÿ Ÿ ⁄ Ÿ ⁄
∫ ÿ ÿ Ÿ ⁄ ÿ Ÿ Ÿ ⁄



The proposition is a tautology, so the argument is valid.

4.7 Predicate logic

Propositional logic provides a useful setting in which we can analyse
many types of logical argument. There are situations, however, where
propositional logic is inadequate, because it cannot deal with the logical
structure that is sometimes present within atomic propositions.

Consider the following arguments:

‘All even numbers are integers. 8 is an even number. Therefore 8 is
an integer.’

‘It is not true that all prime numbers are odd. Therefore there must
be at least one prime number that is not odd.’

Both of these arguments appear to be perfectly valid on the basis of
everyday reasoning, yet if we try to show their validity using
propositional logic we run into difficulties.

In the first argument, the atomic propositions are ‘All even numbers
are integers’, ‘8 is an even number’, and ‘8 is an integer’. The argument
takes the following form:

( )p q r! $

This expression is false if p and q are true and r is false, so it is not a
tautology.

Similarly, if we take the atomic propositions in the second argument to
be ‘All prime numbers are odd’ and ‘There must be at least one prime
number that is not odd’, the argument takes the form:

# $p q

This expression is also not a tautology, because it is false if p and q are
both false.

In order to be able to analyse arguments such as these, we need to look
at the logical structure within atomic propositions. Predicate logic allows
us to do this.
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Definition A predicate is a statement containing one or more variables. If values are
assigned to all the variables in a predicate, the resulting statement is a
proposition.

For example, ‘x < 5’ is a predicate, where x is a variable denoting any real
number. If we substitute a real number for x, we obtain a proposition; for
example, ‘3 < 5’ and ‘6 < 5’ are propositions with truth values T and F
respectively.

A variable need not be a number. For example, ‘x is an employee of the
Ezisoft Software Company’ becomes a proposition with a well defined
truth value when x is replaced by a person’s name: ‘Frederick Firestone2

is an employee of the Ezisoft Software Company.’
There are other ways of obtaining a proposition from a predicate apart

from assigning values to the variables. For example, consider the
predicate ‘x < 5 or x)5’. This predicate is true no matter what value we
substitute for x, so we can form a true proposition by writing:

‘For all x, x < 5 or x)5’.

If we had used ‘x < 5’ as the predicate instead of ‘x < 5 or x)5’, we would
have obtained:

‘For all x, x < 5’,

which is also a proposition (albeit a false one).
While the predicate ‘x < 5’ is not always true, it is true for some values

of x, so we can form a true proposition by writing:

‘There exists an x such that x < 5.’ (Here, ‘an’ means ‘at least one’.)

The expressions ‘for all’ and ‘there exists’ are called quantifiers. The
process of applying a quantifier to a variable is called quantifying the
variable. A variable which has been quantified is said to be bound. For
example, the variable x in ‘There exists an x such that x < 5’ is bound by
the quantifier ‘there exists’. A variable that appears in a predicate but is
not bound is said to be free.

We now introduce a notation that will allow us to write predicates and
quantifiers symbolically. We will use capital letters to denote predicates.
A predicate P that contains a variable x can be written symbolically as
P(x). A predicate can contain more than one variable; a predicate P with
two variables, x and y for example, can be written P(x,y). In general, a
predicate with n variables, x1, x2, ..., xn, can be written P(x1, x2, ..., xn).

The quantifiers ‘for all’ and ‘there exists’ are denoted by the symbols *
and+ respectively. With this notation, expressions containing predicates
and quantifiers can be written symbolically.
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Example 4.7.1 Write in symbols: ‘There exists an x such that x < 4.’

Solution Let P(x) be ‘x < 4’. Then the proposition can be written:

+xP x( )

Example 4.7.2 Write in symbols: ‘For all x, x < 5 or x)5’.

Solution Let P(x) be ‘x < 5’, and let Q(x) be ‘x)5’. Then the proposition can be
written:

* "x P x Q x[ ( ) ( )]

If we use the fact that Q(x) is equivalent to#P x( ), we can also write:

* "#x P x P x[ ( ) ( )]

Here is a more complicated example, using a predicate with two
variables.

Example 4.7.3 Write the following two propositions in symbols:

‘For every number x there is a number y such that y = x + 1.’
‘There is a number y such that, for every number x, y = x + 1.’

Solution Let P(x,y) denote the predicate ‘y = x + 1’. The first proposition is:

* +x yP x y( , )

The second proposition is:

+ *y xP x y( , )

Note carefully the difference in meaning between the two propositions in
Example 4.7.3. In the first proposition the value of y can depend on x
(that is, different values of x can give different values of y), whereas in the
second proposition it cannot. In fact, the first proposition is a true
statement about numbers, while the second is a false statement. This
example shows that the order in which the quantifiers appear can affect
the meaning.

The following example illustrates a practical problem in which the
notation of predicate logic is useful.

Example 4.7.4 In the specification of a system for booking theatre seats, B(p,s) denotes
the predicate ‘person p has booked seat s’. Write the following sentences
in symbolic form:
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(a) Seat s has been booked.
(b) Person p has booked a (that is, at least one) seat.
(c) All the seats are booked.
(d) No seat is booked by more than one person.

Solution (a) +pB p s( , )
(b) +sB p s( , )
(c) * +s pB p s( , )
(d) If no seat is booked by more than one person, then B(p,s) and B(q,s)

cannot both be true unless p and q denote the same person. In
symbols:

It would be possible to formulate various laws of logic involving the
two quantifiers * and+ and the connectives we introduced earlier. Here
we will look just at the relationship between the two quantifiers and the
connective not.

Suppose we want to apply the connective not to the following
proposition:

‘All swans are black.’

Applying not to a proposition is called negating the proposition.
The original proposition can be written in symbols:

*xP x( )

where P(x) is the predicate ‘Swan x is black’.
Here is one way of forming the negation:

‘It is not true that all swans are black.’

Or, more simply:

‘Not all swans are black.’

We can write this proposition in symbols as follows:

#*[ ( )]xP x

Note that it would be incorrect to give the negation as ‘All swans are not
black’. This would be saying something different – that there are no black
swans.

There is another way of saying that not all swans are black; we can say
that there must be at least one swan that is not black. This gives us an
alternative way of expressing the negation of the original proposition:

‘There is a swan that is not black.’

In symbols:
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+ #x P x[ ( )]

By comparing this form of the negation with the original proposition ‘All
swans are black’, we can see that forming the negation corresponds to
negating the predicate and changing the quantifier. We can express this
observation as a law of predicate logic:

There is a second law, which can be thought of as the dual of the first,
for negating a proposition containing ‘there exists’. It also corresponds to
negating the predicate and changing the quantifier:

For example, the negation of ‘There is a number x such that x2 = 2’ is ‘For
every number x, x 2 2, ’.

Example 4.7.5 Write down the negation of the following proposition:

‘For every number x there is a number y such that y < x.’

Solution Write the negation in symbols and simplify it using the laws of logic:

Write the answer as an English sentence:

‘There is a number x such that, for every number y, y x) .’

It is important in a problem such as this to check that the answer makes
sense in terms of what the proposition and its negation mean, rather than
just mechanically applying the laws of logic. In Example 4.7.5, the original
proposition is a true mathematical statement about real numbers, while
its negation is a false statement.

The rule for negating the quantifier ‘for all’ can be used to verify one of
the arguments we quoted as an example at the beginning of this section:

‘It is not true that all prime numbers are odd. Therefore there must
be at least one prime number that is not odd.’

Let P(x) denote the predicate ‘x is a prime number’, and let Q(x) denote
the predicate ‘x is odd’. The proposition ‘all prime numbers are odd’ can
be rephrased as ‘for all x, if x is a prime number then x is odd’, and
written in symbolic form in the following way:

* $x P x Q x[ ( ) ( )]
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Therefore the first sentence of the argument can be written in symbols as
follows:

# * ${ [ ( ) ( )]}x P x Q x

If we apply the negation rule and the laws of propositional logic we met in
Section 4.6, we obtain the following equivalent expressions:

The last line reads: ‘There is a number x such that x is a prime number
and x is not odd’, which we can rephrase as: ‘There must be at least one
prime number that is not odd.’

4.8 Proof techniques

Proofs play a central role in mathematics. The study of any branch of
mathematics begins with a set of axioms, or postulates: statements that
we assume are true without proof, and which serve to define that
particular branch of mathematics. For example, you may have
encountered the axioms of Euclidean geometry; one of the axioms is the
statement that a line can be drawn through any two points. With the
axioms in place, we can proceed to develop theorems. A theorem is a
statement that we accept as true because we can deduce it from the
axioms, or from other theorems we have already established, using logical
reasoning. A proof is a logical argument used to establish the truth of a
theorem.

Mathematical proofs can be presented in a very formal style: the
axioms and theorems are written using the notation of propositional and
predicate logic, and rules of deduction are applied at each step. Such an
approach is appropriate in some circumstances, for example, in the study
of automated theorem proving using a computer. However, proofs are
more commonly presented as ordinary sentences, using a mixture of
words and mathematical notation. In this section, we introduce some
techniques for constructing proofs. A further technique, induction, is
introduced in Chapter 7.

Proving theorems is a skill to be developed. Unlike much of the
mathematics you have studied, it is not a matter of learning a technique
that is guaranteed to work, and applying it to the problem at hand. Often,
an attempted proof using one technique will fail, and another method
must be tried. Finding a method that works requires skill and ingenuity.
We shall illustrate some common proof techniques by means of examples;
the rest is a matter of practice!
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Example 4.8.1 Prove that the sum of any two even numbers is an even number.

Solution Let x and y be even numbers. Then x = 2m for some integer, m, and
y = 2n for some integer, n. Therefore, x + y = 2m + 2n = 2(m + n). Since
m and n are integers, so is m + n, so 2(m + n) is even. Hence, x + y is even.

The solution to Example 4.8.1 is an example of the simplest type of proof,
known as a direct proof. A direct proof starts with the premises, and
proceeds by logical deduction until the required conclusion is reached.

How do you know what to do at each step in the reasoning? At some
points, there is really only one sensible option; for example, after “Let x
and y be even numbers”, the next step is to invoke the definition of an
even number. The one point in the proof where it might not be obvious
what to do next – arguably the key step – occurs after “x + y = 2m + 2n”.
Here, we need to recall what it is that we want to prove: that x + y is even.
Therefore, our aim is to express 2m + 2n in the form 2 × something. We
see that we can do this by taking 2 out as a common factor.

Here is another example of a direct proof.

Example 4.8.2 Prove that, if x is any number of the form 3k + 1 for some integer, k, then
x2 is also of that form.

Solution Let x = 3k + 1. Then x2 = (3k + 1)2. Our aim now is to express (3k + 1)2 in
the form 3 × (something) + 1. We try expanding (3k + 1)2. (There is no
guarantee that this strategy will work – we won’t know until we try.) On
expanding, we obtain (3k + 1)2 = 9k2 + 6k + 1. We can get this into the
form we want by taking a factor of 3 out of the first two terms: 9k2 + 6k + 1
= 3(3k2 + 2k) + 1. To complete the proof, we let n = 3k2 + 2k. Then n is an
integer, and x2 = 3n + 1, so x2 is of the required form.

Not every theorem yields to the method of direct proof. The next
example illustrates another technique.

Example 4.8.3 Prove that, if x2 is even, then x is even.

Solution We try a direct approach first. Let x2 be even. Then x2 = 2n for some
integer, n. But now we run into difficulties; we want to prove something
about x, but in order to isolate x we would have to take the square root of
both sides of the equation. After that, there appears to be no way of
proceeding further.

Here is another approach, which sometimes works when a direct
approach fails. Recall that an implication and its contrapositive are
logically equivalent. It follows that if we can prove the contrapositive of
an implication, then we have proved the implication. In this example, the
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contrapositive is: if x is not even then x2 is not even. Put another way, if x
is odd then x2 is odd.

Let x be odd. Then x = 2n + 1 for some integer, n. Therefore, x2 =
(2n + 1)2 = 4n2 + 4n + 1 = 2(2n2 + 2n) + 1 = 2k + 1, where k = 2n2 + 2n.
Since k is an integer, 2k + 1 is odd, so x2 is odd. This completes the proof.

Example 4.8.4 Prove that, if xy = z2 and x < z then y > z, for any positive numbers x, y
and z.

Solution A direct proof of this result can be constructed, but we will illustrate
another approach here. Suppose the conclusion is not true. In other
words, suppose xy = z2 and x < z, but y is not greater than z. Then y z' .
Multiply both sides of this inequality by x (which we may do, because x is
positive): xy xz' . Hence, z xz2 ' . Now, divide both sides of this last
inequality by z (again, this is a valid operation, because z is positive), to
obtain z x' . But this can be written as x z) , which contradicts the fact
that x < z.

What has gone wrong? Nothing; we made an assumption – that y is not
greater than z – and we have deduced a contradiction. If an assumption
leads to a contradiction, there is only one conclusion we can draw: the
assumption must have been wrong. We conclude that y is greater than z.

The method used in the solution of Example 4.8.4 is called proof by
contradiction. In a proof by contradiction, we start by assuming that the
conclusion is false, and deduce a contradictory statement. Since the
assumption led to a contradiction, we conclude that the assumption was
wrong, and hence that the theorem is true.

In each example in this section, we have proved a statement about all
numbers of a certain type. Sometimes, however, we want to disprove a
statement of this form. In order to do this, all we need to do is to find just
one number for which the statement is false. Such a number is called a
counterexample.

Example 4.8.5 Disprove the statement: Every natural number can be expressed in the
form x2 + y2, where x and y are non-negative integers.

Solution We show that 3 is a counterexample. In other words, we show that there
are no non-negative integers x and y such that x2 + y2 = 3.

If x'1and y'1, then x y2 2 2- ' , so x2 + y2 cannot equal 3 in this
case. If either x) 2 or y) 2, then x y2 2 4- ) , so x2 + y2 cannot equal 3 in
this case either. Therefore, 3 cannot be expressed in the form x2 + y2.
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Many of the ideas we have met in this chapter play a fundamental role
in computing and mathematics, and they will reappear frequently in one
form or another in the following chapters. In particular, we will see in
Chapter 8 how the laws of logic (in the guise of Boolean algebra) can be
used to study the design of the circuitry on which modern digital
computers are based.
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EXERCISES
1 Express the following propositions in symbolic form, and identify

the principal connective:
(a) Either Karen is studying computing and Minh is not

studying mathematics, or Minh is studying mathematics.
(b) It is not the case that if it is sunny then I will carry an

umbrella.
(c) The program will terminate if and only if the input is not

numeric or the escape key is pressed.
(d) If x = 7 and y,4 and z = 2, then if it is not true that either

y = 4 or z, 2 then x = 7 or z = 2.
(Assume that this sentence arises in a context in which x, y and z
have been assigned values, so that it is a genuine proposition.)

2 Let p and q denote respectively the propositions ‘It is snowing’
and ‘I will go skiing’. Write down English sentences
corresponding to the following propositions:
(a) # !p q
(b) p q$
(c) # $q p
(d) ( )p q p"# !

3 (a) Construct the truth table for the connective xor with symbol
., where p q. means ‘either p or q but not both’.

(b) Construct a truth table to show that p q. is logically
equivalent to ( ) ( )p q p q" !# ! .

4 Write down English sentences for the converse and
contrapositive of the following propositions:
(a) If the input file exists, then an error message is not

generated.
(b) If the database is not accessible, then my program cannot

run.
(c) If my program contains no bugs, then it produces correct

output.
5 Write down English sentences corresponding to the converse

and the contrapositive of p q$ , where p and q are defined in
Exercise 2.
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6 Construct truth tables for the following expressions. In each case,
state whether the expression is a tautology, a contradiction, or
neither.
(a) # "# "( )p q p
(b) [ ( )]p p q q$ ! $#

(c) ( ) ( )p q p q! % # "#

(d) [( ) ( )] ( )p r q r p q! " ! $ $#

7 Let P and Q denote two logical expressions. If P is false for a
particular set of truth values of the variables, thenP Q! must be false
for that set of values, so there is no need to find the truth value of Q.
(a) State a similar rule involving P Q" .
(b) Using these two rules as short-cuts, construct the truth

tables for the following expressions. (The rules mean that
some of the entries in the table may be left blank, but the last
column must still be complete.)
(i) [ ( ) ( )] [( ) ]# ! ! "# ! ! "#p q p r p r q
(ii) ## ! " "# !#[ ( )] ( )p q r p r

8 Use truth tables to show that# "#( )p q and# !p q are logically
equivalent.

9 Using truth tables, prove the following laws of logic:
(a) p q r p q p r! " & ! " !( ) ( ) ( )
(b) p p q p! " &( )

10 Use the laws of logic to simplify the following expressions as far
as possible:
(a) ( ) ( )p q p q"# ! "

(b) # $# ![ ( )]p p q
(c) # " !#[ ( )]p q p
(d) [( ) ( )] ( )p q r p r q% $# $ " $#

11 An algorithm contains the following line:
If not(x)3and x < 6) then ...

How could this be written more simply?
12 Rewrite the following pseudocode using a While-do in place of

the Repeat-until:
1. n/ 0
2. term/1
3. sum/ 0
4. Repeat

4.1. n n/ -1
4.2. term term/ / 2
4.3. sum sum term/ -
until term < 0.001 or n = 100
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13 Use the laws of logic to classify the following expressions as
tautologies or contradictions:
(a) ( ) ( )p q p q!# "# "

(b) [ ( )] ( )p q p p p$ $ % !#

(c) [ ( )]p p q q! $ $

14 Express the following argument in symbolic form and test its
validity using the laws of logic:

‘If n > 10 when the subroutine call statement is reached, then
the subroutine is called. The subroutine is called. Therefore
n > 10 when the subroutine call statement is reached.’

15 Express the following argument in symbolic form and test its
validity using the laws of logic:

‘Sandra is studying Computing or Sandra is not studying
Accounting. If Sandra is studying Accounting then Sandra is
not studying Computing. Therefore Sandra is studying
Computing.’

16 Find an expression that is logically equivalent to p q" but which
uses only the connectives and and not.

17 The connective nand, with symbol | (sometimes called the Sheffer
stroke), is defined by the truth table shown in Table 4.14.

(a) Find an expression that is logically equivalent to#p using
only the connective nand.

(b) Find an expression that is logically equivalent to p q! using
only the connective nand.

(c) Find an expression that is logically equivalent to p q" using
only the connective nand.

(This exercise shows that any expression built up using the
connectives and, or and not can be converted to a logically
equivalent expression using just the connective nand.)

18 Write the following propositions symbolically in the notation of
predicate logic, and state their truth values:

p q p | q

T T F

T F T

F T T

F F T

Table 4.14
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(a) ‘There is a real number x such that x2 – 3x + 2 = 0.’
(b) ‘For every real number x there is a real number y such that

x = y2.’
19 Write the negations of the propositions in Exercise 18 in

symbolic form and in English.
20 In the design specification of a library borrowing system, B(p,b)

denotes the predicate ‘person p has borrowed book b’, and O(b)
denotes the predicate ‘book b is overdue’.
Write the following sentences in symbolic form:
(a) Person p has borrowed a book. (Assume that ‘a’ means ‘at

least one’.)
(b) Book b has been borrowed.
(c) Book b is on the shelf.
(d) Person p has borrowed at least two books.
(e) No book has been borrowed by more than one person.
(f) There are no overdue books.
(g) If a book is overdue, then it must have been borrowed.
(h) Person p has an overdue book.

21 Prove each of the following statements:
(a) The sum of any even number and any odd number is odd.
(b) The product of any two odd numbers is odd.
(c) If x + y < 2 then x < 1 or y < 1, for any real numbers x and y.
(d) The sum of any five consecutive integers is divisible by 5.
(e) If n is an integer, then n2 + n is even.
(f) If n is an odd integer, then n2 – 1 is divisible by 4.

22 Fill in the details in the following outline of a proof that 2 is
irrational:
1. Assume m n/ 0 2 where m and n are natural numbers.

Explain why we can assume that m and n are not both even.
2. Deduce that m2 = 2n2, and hence explain why m must be even.
3. Let m = 2k (where k is a natural number), and deduce that n is

even.
4. Explain how this proves that 2 is irrational.

23 Find a counterexample for each of the following statements:
(a) Any natural number that is divisible by both 4 and 6 is also

divisible by 24.
(b) If n is a natural number, then n4 + 4 is a multiple of 5.
(c) Every natural number can be expressed in the form x2 + y2 + z2

for some non-negative integers x, y and z.
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(d) For every natural number n, n n3 2 1) 1 .
24 Consider the following self-referential statement:

‘This statement has five words.’
(a) What is the truth value of the statement?
(b) Write down the negation of the statement. What is its truth

value?
(This exercise shows the kind of difficulty that can arise with a
self-referential statement, even if it appears to have a well defined
truth value.)

25 On one side of a card is written:
‘The statement on the other side of this card is true.’

On the other side of the card is written:
‘The statement on the other side of this card is false.’

Explain how a paradox arises in this situation. (The problem is
known as the Jourdain card paradox.)

26 Four people are using computers in a computing laboratory. You
know that the first person is a student and the second is not, but
you do not know whether they are using the software on the
network. You know that the third person is using the software on
the network and the fourth is not, but you do not know whether
they are students.
As the laboratory supervisor, you are required to enforce the rule
that only students are allowed to use the software on the network.
Which two people should you question, and what should you ask
them?
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