

S

NOR INTAN SHAFINI BINTI NASARUDDIN

Visiting Lecturer from Faculty of Computer and Mathematical Sciences UiTM Melaka, Malaysia

IN THIS CHAPTER, YOU WILL LEARN:

- How relationships between entities are defined and refined, and how such relationships are incorporated into the database design process
- How ERD components affect database design and implementation
- How to interpret the modeling symbols for the four most popular ER modeling tools
- That real-world database design often requires that you reconcile conflicting goals

THE ENTITY RELATIONSHIP (ER) MODEL

- ER model forms the basis of an ER diagram
- ERD represents the conceptual database as viewed by end user
- ERDs depict the ER model's three main components:
 - Entities
 - Attributes
 - Relationships

ENTITY

- Entity a "thing", "place" or "object" in our environment that we want to keep track of.
- Entity set A **collection of entities** of the same type (e.g., all of the company's employees).
- Corresponds to a table and not to a row in the relational environment
- In both the Chen and Crow's Foot models, an entity is represented by a rectangle containing the entity's name
- Entity name, a noun, is usually written in capital letters

- Entity is in rectangular shape
- Name of entity is in caps above the separator line.
- For example:
 - Entity type = STUDENT

ATTRIBUTES

- Characteristics of entities
- In Chen model, attributes are represented by ovals and are connected to the entity rectangle with a line
- Each oval contains the name of the attribute it represents
- In the Crow's Foot model, the attributes are simply written in the attribute box below the entity rectangle

THE ATTRIBUTES OF THE STUDENT ENTITY

DOMAINS

- Attributes have a *domain*:
 - The attribute's set of possible values

Each attributes have its own domain of values, for example, Room Number must be an Integer range from 1000-1999

Attributes may share a domain

PRIMARY KEYS

- <u>Underlined</u> in the ER diagram
- Key attributes are also underlined in frequently used table structure shorthand
- Ideally composed of only a single attribute
- Possible to use a *composite key*:
 - Primary key composed of more than one attribute

ATTRIBUTES

- Composite attribute
- Simple attribute
- Single-value attribute
- Multivalued attributes
- Derived attributes

SIMPLE ATTRIBUTE VS COMPOSITE ATTRIBUTE

SIMPLE ATTRIBUTE

"Simple attributes are atomic values, which cannot be divided further."

Examples for simple attribute are :

COMPOSITE ATTRIBUTE

"Composite attribute is an attribute where the values of that attribute can be further subdivided into meaningful sub-parts."

Examples for composite attribute are :

SINGLE-VALUED ATTRIBUTE VS MULTIVALUED ATTRIBUTE

SINGLE-VALUED ATTRIBUTE

"Single-valued attribute is an attribute that can have only a single value."

Examples for single-valued attribute are :

MULTIVALUED ATTRIBUTE

"Multi valued attributes are attributes that can have many values."

Examples for multivalued attribute are :

In the Chen ERM, the multi valued attributes are shown by a double line connecting the attribute to the entity.

RESOLVING MULTIVALUED ATTRIBUTE PROBLEMS

- Although the conceptual model can handle multivalued attributes, you should not implement them in the relational DBMS
 - Within original entity, create several new attributes, one for each of the original multivalued attribute's components
 - Can lead to major structural problems in the table
 - Create a new entity composed of original multivalued attribute's components

MULTIVALUED ATTRIBUTE

MOD_COD

"Multi valued attributes are attributes that can have many values."

ATTRIBUTES

These attribute types can come together in a way like :-

DERIVED ATTRIBUTES

DERIVED ATTRIBUTE

"Attribute whose value may be calculated (derived) from other attributes."

Need not be physically stored within the database.

Can be derived by using an algorithm.

Examples for composite attribute are :

- o Age
- Average Salary

DEPICTION OF A DERIVED ATTRIBUTE

TEST YOUR UNDERSTANDING

RELATIONSHIPS

- Association between entities
- Participants:
 - Entities that participate in a relationship
- Relationships between entities always operate in both directions
- Relationship can be classified as 1:M
- Relationship classification is difficult to establish if you only know one side

CONNECTIVITY AND CARDINALITY

- Connectivity
 - Used to describe the relationship classification
- Cardinality
 - Expresses the specific number of entity occurrences associated with one occurrence of the related entity
- Established by very concise statements known as business rules.

CONNECTIVITY AND CARDINALITY IN AN ERD

RELATIONSHIP STRENGTH

- Existence dependence
 - Entity's existence depends on the existence of one or more other entities
- Existence independence
 - Entity can exist apart from one or more related entities
- Weak (non-identifying) relationships
 - One entity is not existence-independent on another entity
- Strong (Identifying) Relationships
 - Related entities are existence-dependent

A WEAK (NON-IDENTIFYING) RELATIONSHIP BETWEEN COURSE AND CLASS

A STRONG (IDENTIFYING) RELATIONSHIP BETWEEN COURSE AND CLASS

Table name: COURSE

Database name: Ch04_TinyCollege_Alt

	CRS_CODE	DEPT_CODE	CRS_DESCRIPTION	CRS_CREDIT
+	ACCT-211	ACCT	Accounting I	3
-	ACCT-212	ACCT	Accounting II	3
-	CIS-220	CIS	Intro. to Microcomputing	3
-	CIS-420	CIS	Database Design and Implementation	4
-	MATH-243	MATH	Mathematics for Managers	3
-	QM-261	CIS	Intro. to Statistics	3
-	QM-362	CIS	Statistical Applications	4

Table name: CLASS

CRS_CODE	CLASS_SECTION	CLASS_TIME	ROOM_CODE	PROF_NUM
ACCT-211	1	M/VF 8:00-8:50 a.m.	BUS311	105
ACCT-211	2	MVVF 9:00-9:50 a.m.	BUS200	105
ACCT-211	3	TTh 2:30-3:45 p.m.	BUS252	342
ACCT-212	1	MVVF 10:00-10:50 a.m.	BUS311	301
ACCT-212	2	Th 6:00-8:40 p.m.	BUS252	301
CIS-220	1	MVVF 9:00-9:50 a.m.	KLR209	228
CIS-220	2	MVVF 9:00-9:50 a.m.	KLR211	114
CIS-220	3	MVVF 10:00-10:50 a.m.	KLR209	228
CIS-420	1	VV 6:00-8:40 p.m.	KLR209	162
MATH-243	1	Th 6:00-8:40 p.m.	DRE155	325
QM-261	1	MVVF 8:00-8:50 a.m.	KLR200	114
QM-261	2	TTh 1:00-2:15 p.m.	KLR200	114
QM-362	1	MVVF 11:00-11:50 a.m.	KLR200	162
QM-362	2	TTh 2:30-3:45 p.m.	KLR200	162

RELATIONSHIP PARTICIPATION

- Optional:
 - One entity occurrence does not require a corresponding entity occurrence in a particular relationship
- Mandatory:
 - One entity occurrence requires a corresponding entity occurrence in a particular relationship

AN OPTIONAL CLASS ENTITY IN THE RELATIONSHIP PROFESSOR TEACHES CLASS

COURSE AND CLASS IN A MANDATORY RELATIONSHIP

RELATIONSHIP STRENGTH AND WEAK ENTITIES

- Weak entity meets two conditions
 - Existence-dependent:
 - Cannot exist without entity with which it has a relationship
 - Has primary key that is partially or totally derived from the parent entity in the relationship
- Database designer usually determines whether an entity can be described as weak based on the business rules

A WEAK ENTITY IN AN ERD

A WEAK ENTITY IN A STRONG RELATIONSHIP

Ta	Table name: EMPLOYEE			Database name: Ch04_ShortCo			
		EMP_NUM	EMP_LNAME	EMP_FNAME	EMP_INITIAL	EMP_DOB	EMP_HIREDATE
	+	1001	Callifante	Jeanine	J	12-Mar-64	25-May-97
	+	1002	Smithson	William	к	23-Nov-70	28-May-97
	+	1003	Washington	Herman	Н	15-Aug-68	28-May-97
	+	1004	Chen	Lydia	в	23-Mar-74	15-Oct-98
	+	1005	Johnson	Melanie		28-Sep-66	20-Dec-98
	+	1006	Ortega	Jorge	G	12-Jul-79	05-Jan-02
	+	1007	O'Donnell	Peter	D	10-Jun-71	23-Jun-02
	+	1008	Brzenski	Barbara	A	12-Feb-70	01-Nov-03

Table name: DEPENDENT

	EMP_NUM	DEP_NUM	DEP_FNAME	DEP_DOB
►	1001	1	Annelise	05-Dec-97
	1001	2	Jorge	30-Sep-02
	1003	1	Suzanne	25-Jan-04
	1006	1	Carlos	25-May-01
	1008	1	Michael	19-Feb-95
	1008	2	George	27-Jun-98
	1008	3	Katherine	18-Aug-03

RELATIONSHIP DEGREE

- Indicates number of associated entities or participants
- Unary relationship
 - Association is maintained within a single entity
- Binary relationship
 - Two entities are associated
- Ternary relationship
 - Three entities are associated

THREE TYPES OF RELATIONSHIPS

RECURSIVE RELATIONSHIPS

- Relationship can exist between occurrences of the same entity set
- Naturally found within a unary relationship

AN ER REPRESENTATION OF RECURSIVE RELATIONSHIPS

THE 1:1 RECURSIVE RELATIONSHIP "EMPLOYEE IS MARRIED TO EMPLOYEE"

Tab	le name: E	MPLOYEE_V1		Database name: Ch04_PartCo		
	EMP_NUM	EMP_LNAME	EMP_FNAME	EMP_SPOUSE		
)	345	Ramirez	James	347		
	346	Jones	Anne	349		
	347	Ramirez	Louise	345		
	348	Delaney	Robert			
	349	Shapiro	Anton	346		

IMPLEMENTATION OF THE M:N RECURSIVE "PART CONTAINS PART" RELATIONSHIP

Table name: COMPONENT

Database name: Ch04_PartCo

	COMP_CODE	PART_CODE	COMP_PARTS_NEEDED
•	C-130	AA21-6	4
ç	C-130	AB-121	2
	C-130	E129	1
	C-131A2	E129	1
	C-130	X10	4
	C-131A2	X10	1
	C-130	X34AW	2
	C-131A2	X34AW	2

Table name: PART

	PART_CODE	PART_DESCRIPTION	PART_IN_STOCK
►	AA21-6	2.5 cm. washer, 1.0 mm. rim	432
	AB-121	Cotter pin, copper	1,034
	C-130	Rotor assembly	36
	E129	2.5 cm. steel shank	128
	X10	10.25 cm. rotor blade	345
	X34AW	2.5 cm. hex nut	879

IMPLEMENTATION OF THE 1:M "EMPLOYEE MANAGES EMPLOYEE" RECURSIVE RELATIONSHIP

Table name: EMPLOYEE V2

	EMP_CODE	EMP_LNAME	EMP_MANAGER
•	101	Waddell	102
	102	Orincona	
	103	Jones	102
	104	Reballoh	102
	105	Robertson	102
	106	Deitona	102

Database name: Ch04_PartCo

COMPOSITE ENTITIES

- Also known as bridge entities
- Composed of the primary keys of each of the entities to be connected
- May also contain additional attributes that play no role in the connective process

CONVERTING THE M:N RELATIONSHIP INTO TWO 1:M RELATIONSHIPS

Table name: STUDENT

Table name: ENROLL

	CLASS_CODE	STU_NUM	ENROLL_GRADE
•	10014	321452	С
	10014	324257	B
	10018	321452	A
	10018	324257	B
	10021	321452	С
	10021	324257	С

Table name: CLASS

	CLASS_COD	E CRS_CODE	CLASS_SECTION	CLASS_TIME	CLASS_ROOM	PROF_NUM
	± 10014	ACCT-211	3	TTh 2:30-3:45 p.m.	BUS252	342
	+ 10018	CIS-220	2	MVVF 9:00-9:50 a.m.	KLR211	114
1	+ 10021	QM-261	1	MVVF 8:00-8:50 a.m.	KLR200	114

Database name: Ch04_CollegeTry

THE M:N RELATIONSHIP BETWEEN STUDENT AND CLASS

A COMPOSITE ENTITY IN AN ERD

A COMPARISON OF ER MODELING SYMBOLS

	Chen	Crow's Foot	Rein85	IDEF1X
Entity				
Relationship line				
Relationship	<>		\rightarrow	
Option symbol	0	0	0	\diamond
One (1) symbol	1	1 - E	\bigtriangledown	
Many (M) symbol	м		-	•
Composite entity				
Weak entity				

THE CHEN REPRESENTATION OF THE INVOICING PROBLEM

THE CROW'S FOOT REPRESENTATION OF THE INVOICING PROBLEM

THE REIN85 REPRESENTATION OF THE INVOICING PROBLEM

THE IDEF1X REPRESENTATION OF THEINVOICING PROBLEM

DEVELOPING AN ER DIAGRAM

- Database design is an iterative rather than a linear or sequential process
- Iterative process
 - Based on repetition of processes and procedures

COMPONENTS OF THE ER MODEL

ENTITY	RELATIONSHIP	CONNECTIVITY	ENTITY
SCHOOL	operates	1:M	DEPARTMENT
DEPARTMENT	has	1:M	STUDENT
DEPARTMENT	employs	1:M	PROFESSOR
DEPARTMENT	offers	1:M	COURSE
COURSE	generates	1:M	CLASS
PROFESSOR	is an	1:1	EMPLOYEE
PROFESSOR	is dean of	1:1	SCHOOL
PROFESSOR	chairs	1:1	DEPARTMENT
PROFESSOR	teaches	1:M	CLASS
PROFESSOR	advises	1:M	STUDENT
STUDENT	enrolls in	1:M	CLASS
BUILDING	contains	1:M	ROOM
ROOM	is used for	1:M	CLASS

THE COMPLETED TINY COLLEGE ERD

THE CHALLENGE OF DATABASE DESIGN: CONFLICTING GOALS

Database design must conform to design standards

- High processing speeds are often a top priority in database design
- Quest for timely information might be the focus of database design

SUMMARY

- Entity relationship (ER) model
 - Uses ER diagrams to represent conceptual database as viewed by the end user
 - Three main components
 - Entities
 - Relationships
 - Attributes
 - Includes connectivity and cardinality notations
- Connectivities and cardinalities are based on business rules

SUMMARY (CONTINUED)

- ER symbols are used to graphically depict the ER model's components and relationships
- ERDs may be based on many different ER models
- forced to make design compromises

REFERENCES

- Database Systems: Design, Implementation, & Management, 6th Edition, Rob & Coronel
- Database Principles: Fundamentals of Design, Implementation and Management, 10th Edition, Carlos Coronel, Stephen Morris & Peter Rob
- https://www.clipartmax.com/middle/m2i8d3Z5G6b1N4G6_other-student-icon-transparent-imagesother-student-icon-transparent-images/

