
OOP’S
FEATURES
ALFA FARIDH SUNI
PEMROGRAMAN BERORIENTASI OBJEK
2020

LET’S WATCH A VIDEO

SUMMARY FROM
VIDEO

OOP Features: APIE
• Abstraction
• Polymorphism
• Inheritance
• Encapsulation

ABSTRACTION

ABSTRACTION
Abstraction: to understand the problem to separate
necessary from unnecessary details.

Abstraction is the structuring of a nebulous problem into
well-defined entities by defining their data and operations.

What we get after we do an abstraction:
Model of the problem’s solution à Class
Well defined class consist of: data & operation (attributes &
methods of class)

ENCAPSULATION
• The basic unit of OOP is a class, which encapsulates both

the static attributes and dynamic behaviors within a "box",
and specifies the public interface for using these boxes.

• OOP combines the data structures and algorithms of a
software entity inside the same box.

ENCAPSULATION

CLASS
ENCAPSULATION

ACCESS MODIFIER
Type of access modifier:

1. Public: Accessible from any class
2. Private: Only accessible from within class
3. Protected: Accessible from subclass/child class (we will

discuss later in inheritance)

INHERITANCE
In OOP, we often organize classes in hierarchy to avoid
duplication and reduce redundancy.
The classes in the lower hierarchy inherit all the variables
(static attributes) and methods (dynamic behaviors) from the
higher hierarchies.
A class in the lower hierarchy is called a subclass (or
derived, child, extended class). A class in the upper hierarchy
is called a superclass (or base, parent class).
By pulling out all the common variables and methods into the
superclasses, and leave the specialized variables and
methods in the subclasses, redundancy can be greatly
reduced or eliminated as these common variables and
methods do not need to be repeated in all the subclasses

INHERITANCE

SUPERCLASS &
SUBCLASS

A subclass inherits all the variables and methods from its superclasses

INHERITANCE
SYNTAX
// in C++

class SubclassName : inheritance-access-specifier
SuperclassName {

// your subclass code here

. . . .

};

// in Java

class SubclassName extends SuperclassName {

// your subclass code here

. . . .

};

POLYMORPHISM
Poly : many,
Morphos: form
Object can take many form.

POLYMORPHISM (IN C++)
Polymorphism works on object pointers and references
using so-called dynamic binding at run-time. It does not work
on regular objects, which uses static binding during the
compile-time.
We typically allocate object dynamically via the new operator
and manipulate the return pointer in polymorphism. Recall
that we can dynamically allocate objects for the Point and
MovablePoint classes as follows:

SUBSTITUTION (IN
C++)
A subclass instance inherits all the properties of the
superclass, in the case of public-inheritance. It can do
whatever a superclass instance can do. This is known as a
"is-a" relationship. Hence, you can substitute a subclass
instance to a superclass reference.

SUBSTITUTION (IN
C++)
1. A subclass instance can be substituted for a superclass

reference.
2. Once substituted, only the superclass' functions can be

called, no the subclass'.
3. If the subclass overrides a superclass function. We wish

to run the overridden version in the subclass, instead of
the superclass' version (as in the previous example).

VIRTUAL FUNCTION
(IN C++)
Virtual Functions: To implement polymorphism, we need to
use the keyword virtual for functions that are meant to be
polymorphic. In this case, if a superclass pointer is aiming at
a subclass objects, and invoke a virtual function that is
overridden by the subclass, the subclass version will be
invoked, instead of the superclass version.

